» Articles » PMID: 25253688

Structural and Biochemical Characterization of Chlamydia Trachomatis Hypothetical Protein CT263 Supports That Menaquinone Synthesis Occurs Through the Futalosine Pathway

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2014 Sep 26
PMID 25253688
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

The obligate intracellular human pathogen Chlamydia trachomatis is the etiological agent of blinding trachoma and sexually transmitted disease. Genomic sequencing of Chlamydia indicated this medically important bacterium was not exclusively dependent on the host cell for energy. In order for the electron transport chain to function, electron shuttling between membrane-embedded complexes requires lipid-soluble quinones (e.g. menaquionone or ubiquinone). The sources or biosynthetic pathways required to obtain these electron carriers within C. trachomatis are poorly understood. The 1.58Å crystal structure of C. trachomatis hypothetical protein CT263 presented here supports a role in quinone biosynthesis. Although CT263 lacks sequence-based functional annotation, the crystal structure of CT263 displays striking structural similarity to 5'-methylthioadenosine nucleosidase (MTAN) enzymes. Although CT263 lacks the active site-associated dimer interface found in prototypical MTANs, co-crystal structures with product (adenine) or substrate (5'-methylthioadenosine) indicate that the canonical active site residues are conserved. Enzymatic characterization of CT263 indicates that the futalosine pathway intermediate 6-amino-6-deoxyfutalosine (kcat/Km = 1.8 × 10(3) M(-1) s(-1)), but not the prototypical MTAN substrates (e.g. S-adenosylhomocysteine and 5'-methylthioadenosine), is hydrolyzed. Bioinformatic analyses of the chlamydial proteome also support the futalosine pathway toward the synthesis of menaquinone in Chlamydiaceae. This report provides the first experimental support for quinone synthesis in Chlamydia. Menaquinone synthesis provides another target for agents to combat C. trachomatis infection.

Citing Articles

In silico functional annotation of hypothetical proteins from the Bacillus paralicheniformis strain Bac84 reveals proteins with biotechnological potentials and adaptational functions to extreme environments.

Rahman M, Heme U, Parvez M PLoS One. 2022; 17(10):e0276085.

PMID: 36228026 PMC: 9560612. DOI: 10.1371/journal.pone.0276085.


Inhibition of the futalosine pathway for menaquinone biosynthesis suppresses Chlamydia trachomatis infection.

Dudiak B, Nguyen T, Needham D, Outlaw T, McCafferty D FEBS Lett. 2021; 595(24):2995-3005.

PMID: 34741525 PMC: 9980418. DOI: 10.1002/1873-3468.14223.


Aminofutalosine Deaminase in the Menaquinone Pathway of .

Feng M, Harijan R, Harris L, Tyler P, Frohlich R, Brown M Biochemistry. 2021; 60(24):1933-1946.

PMID: 34077175 PMC: 9260860. DOI: 10.1021/acs.biochem.1c00215.


Questing functions and structures of hypothetical proteins from Campylobacter jejuni: a computer-aided approach.

Gazi M, Mahmud S, Fahim S, Islam M, Das S, Mahfuz M Biosci Rep. 2020; 40(6).

PMID: 32458979 PMC: 7284324. DOI: 10.1042/BSR20193939.


Enzymatic Transition States and Drug Design.

Schramm V Chem Rev. 2018; 118(22):11194-11258.

PMID: 30335982 PMC: 6615489. DOI: 10.1021/acs.chemrev.8b00369.


References
1.
Beatty W, Morrison R, Byrne G . Persistent chlamydiae: from cell culture to a paradigm for chlamydial pathogenesis. Microbiol Rev. 1994; 58(4):686-99. PMC: 372987. DOI: 10.1128/mr.58.4.686-699.1994. View

2.
Yu C, Mun S, Wang N . Theoretical analysis of the effects of reversible dimerization in size exclusion chromatography. J Chromatogr A. 2006; 1132(1-2):99-108. DOI: 10.1016/j.chroma.2006.07.017. View

3.
Miller C, DUERRE J . S-ribosylhomocysteine cleavage enzyme from Escherichia coli. J Biol Chem. 1968; 243(1):92-7. View

4.
Binet R, Fernandez R, Fisher D, Maurelli A . Identification and characterization of the Chlamydia trachomatis L2 S-adenosylmethionine transporter. mBio. 2011; 2(3):e00051-11. PMC: 3104491. DOI: 10.1128/mBio.00051-11. View

5.
Roy A, Kucukural A, Zhang Y . I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 2010; 5(4):725-38. PMC: 2849174. DOI: 10.1038/nprot.2010.5. View