» Articles » PMID: 24870542

A Draft Map of the Human Proteome

Abstract

The availability of human genome sequence has transformed biomedical research over the past decade. However, an equivalent map for the human proteome with direct measurements of proteins and peptides does not exist yet. Here we present a draft map of the human proteome using high-resolution Fourier-transform mass spectrometry. In-depth proteomic profiling of 30 histologically normal human samples, including 17 adult tissues, 7 fetal tissues and 6 purified primary haematopoietic cells, resulted in identification of proteins encoded by 17,294 genes accounting for approximately 84% of the total annotated protein-coding genes in humans. A unique and comprehensive strategy for proteogenomic analysis enabled us to discover a number of novel protein-coding regions, which includes translated pseudogenes, non-coding RNAs and upstream open reading frames. This large human proteome catalogue (available as an interactive web-based resource at http://www.humanproteomemap.org) will complement available human genome and transcriptome data to accelerate biomedical research in health and disease.

Citing Articles

Microglia dysfunction, neurovascular inflammation and focal neuropathologies are linked to IL-1- and IL-6-related systemic inflammation in COVID-19.

Fekete R, Simats A, Biro E, Posfai B, Cserep C, Schwarcz A Nat Neurosci. 2025; 28(3):558-576.

PMID: 40050441 PMC: 11893456. DOI: 10.1038/s41593-025-01871-z.


Small Heat Shock Proteins: Protein Aggregation Amelioration and Neuro- and Age-Protective Roles.

Albinhassan T, Alharbi B, AlSuhaibani E, Mohammad S, Malik S Int J Mol Sci. 2025; 26(4).

PMID: 40003991 PMC: 11855743. DOI: 10.3390/ijms26041525.


A curated tissue-specific proteome, phosphoproteome, and kinome map of Drosophila melanogaster with an integrated outlook in circadian physiology.

Das S, Kannihalli A, Banerjee S, Chakraborty N, Ray S Funct Integr Genomics. 2025; 25(1):41.

PMID: 39971807 DOI: 10.1007/s10142-025-01554-9.


Immunogenic cryptic peptides dominate the antigenic landscape of ovarian cancer.

Raja R, Mangalaparthi K, Madugundu A, Jessen E, Pathangey L, Magtibay P Sci Adv. 2025; 11(8):eads7405.

PMID: 39970218 PMC: 11837991. DOI: 10.1126/sciadv.ads7405.


Multi-Omics Analysis Reveals Immune Infiltration and Clinical Significance of Phosphorylation Modification Enzymes in Lung Adenocarcinoma.

Long D, Ding Y, Wang P, Wei L, Ma K Int J Mol Sci. 2025; 26(3).

PMID: 39940833 PMC: 11817228. DOI: 10.3390/ijms26031066.


References
1.
Paik Y, Jeong S, Omenn G, Uhlen M, Hanash S, Cho S . The Chromosome-Centric Human Proteome Project for cataloging proteins encoded in the genome. Nat Biotechnol. 2012; 30(3):221-3. DOI: 10.1038/nbt.2152. View

2.
Pei B, Sisu C, Frankish A, Howald C, Habegger L, Mu X . The GENCODE pseudogene resource. Genome Biol. 2012; 13(9):R51. PMC: 3491395. DOI: 10.1186/gb-2012-13-9-r51. View

3.
Legrain P, Aebersold R, Archakov A, Bairoch A, Bala K, Beretta L . The human proteome project: current state and future direction. Mol Cell Proteomics. 2011; 10(7):M111.009993. PMC: 3134076. DOI: 10.1074/mcp.M111.009993. View

4.
Kall L, Canterbury J, Weston J, Noble W, MacCoss M . Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods. 2007; 4(11):923-5. DOI: 10.1038/nmeth1113. View

5.
Lane L, Bairoch A, Beavis R, Deutsch E, Gaudet P, Lundberg E . Metrics for the Human Proteome Project 2013-2014 and strategies for finding missing proteins. J Proteome Res. 2013; 13(1):15-20. PMC: 3928647. DOI: 10.1021/pr401144x. View