» Articles » PMID: 22844090

A Benchmark for Chromatin Binding Measurements in Live Cells

Overview
Specialty Biochemistry
Date 2012 Jul 31
PMID 22844090
Citations 181
Authors
Affiliations
Soon will be listed here.
Abstract

Live-cell measurement of protein binding to chromatin allows probing cellular biochemistry in physiological conditions, which are difficult to mimic in vitro. However, different studies have yielded widely discrepant predictions, and so it remains uncertain how to make the measurements accurately. To establish a benchmark we measured binding of the transcription factor p53 to chromatin by three approaches: fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS) and single-molecule tracking (SMT). Using new procedures to analyze the SMT data and to guide the FRAP and FCS analysis, we show how all three approaches yield similar estimates for both the fraction of p53 molecules bound to chromatin (only about 20%) and the residence time of these bound molecules (∼1.8 s). We also apply these procedures to mutants in p53 chromatin binding. Our results support the model that p53 locates specific sites by first binding at sequence-independent sites.

Citing Articles

Increasingly efficient chromatin binding of cohesin and CTCF supports chromatin architecture formation during zebrafish embryogenesis.

Cossmann J, Kos P, Varamogianni-Mamatsi V, Assenheimer D, Bischof T, Kuhn T Nat Commun. 2025; 16(1):1833.

PMID: 39979259 PMC: 11842872. DOI: 10.1038/s41467-025-56889-5.


Thermodynamic principles link transcription factor affinities to single-molecule chromatin states in cells.

Schaepe J, Fries T, Doughty B, Crocker O, Hinks M, Marklund E bioRxiv. 2025; .

PMID: 39975040 PMC: 11838358. DOI: 10.1101/2025.01.27.635162.


Effective in vivo binding energy landscape illustrates kinetic stability of RBPJ-DNA binding.

Huynh D, Hoffmeister P, Friedrich T, Zhang K, Bartkuhn M, Ferrante F Nat Commun. 2025; 16(1):1259.

PMID: 39893191 PMC: 11787368. DOI: 10.1038/s41467-025-56515-4.


A high-throughput platform for single-molecule tracking identifies drug interaction and cellular mechanisms.

McSwiggen D, Liu H, Tan R, Agramunt Puig S, Akella L, Berman R Elife. 2025; 12.

PMID: 39786807 PMC: 11717362. DOI: 10.7554/eLife.93183.


Cohesin positions the epigenetic reader Phf2 within the genome.

Tang W, Costantino L, Stocsits R, Wutz G, Ladurner R, Hudecz O EMBO J. 2025; 44(3):736-766.

PMID: 39748119 PMC: 11790891. DOI: 10.1038/s44318-024-00348-2.


References
1.
Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine A, Elowitz M . Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet. 2004; 36(2):147-50. DOI: 10.1038/ng1293. View

2.
Smeenk L, van Heeringen S, Koeppel M, Gilbert B, Janssen-Megens E, Stunnenberg H . Role of p53 serine 46 in p53 target gene regulation. PLoS One. 2011; 6(3):e17574. PMC: 3048874. DOI: 10.1371/journal.pone.0017574. View

3.
Elf J, Li G, Xie X . Probing transcription factor dynamics at the single-molecule level in a living cell. Science. 2007; 316(5828):1191-4. PMC: 2853898. DOI: 10.1126/science.1141967. View

4.
Hinow P, Rogers C, Barbieri C, Pietenpol J, Kenworthy A, DiBenedetto E . The DNA binding activity of p53 displays reaction-diffusion kinetics. Biophys J. 2006; 91(1):330-42. PMC: 1479054. DOI: 10.1529/biophysj.105.078303. View

5.
Darzacq X, Shav-Tal Y, de Turris V, Brody Y, Shenoy S, Phair R . In vivo dynamics of RNA polymerase II transcription. Nat Struct Mol Biol. 2007; 14(9):796-806. PMC: 4942130. DOI: 10.1038/nsmb1280. View