» Articles » PMID: 3624308

Micrometer-scale Domains in Fibroblast Plasma Membranes

Overview
Journal J Cell Biol
Specialty Cell Biology
Date 1987 Aug 1
PMID 3624308
Citations 81
Authors
Affiliations
Soon will be listed here.
Abstract

We have used the technique of fluorescence photobleaching recovery to measure the lateral diffusion coefficients and the mobile fractions of a fluorescent lipid probe, 1-acyl-2-(12-[(7-nitro-2-1, 3-benzoxadiazol-4-yl)aminododecanoyl]) phosphatidylcholine (NBD-PC), and of labeled membrane proteins of human fibroblasts. Values for mobile fractions decrease monotonically with increasing size of the laser spot used for the measurements, over a range of 0.35-5.0 microns. Values for NBD-PC diffusion coefficients increase in part of this range to reach a plateau at larger laser spots. This variation is not an artifact of the measuring system, since the effects are not seen if diffusion of the probe is measured in liposomes. We also find that the distribution of diffusion coefficients measured with small laser spots is heterogeneous indicating that these small spots can sample different regions of the membrane. These regions appear to differ in protein concentration. Our data strongly indicate that fibroblast surface membranes consist of protein-rich domains approximately 1 micron in diameter, embedded in a relatively protein-poor lipid continuum. These features appear in photographs of labeled cell surfaces illuminated by the expanded laser beam.

Citing Articles

The Utility of Fluorescence Recovery after Photobleaching (FRAP) to Study the Plasma Membrane.

Day C, Kang M Membranes (Basel). 2023; 13(5).

PMID: 37233553 PMC: 10221041. DOI: 10.3390/membranes13050492.


Statin-induced increase in actin polymerization modulates GPCR dynamics and compartmentalization.

Sarkar P, Chattopadhyay A Biophys J. 2022; 122(11):1938-1955.

PMID: 36045572 PMC: 10257020. DOI: 10.1016/j.bpj.2022.08.039.


Transbilayer Coupling of Lipids in Cells Investigated by Imaging Fluorescence Correlation Spectroscopy.

Bag N, London E, Holowka D, Baird B J Phys Chem B. 2022; 126(12):2325-2336.

PMID: 35294838 PMC: 9675598. DOI: 10.1021/acs.jpcb.2c00117.


Do ABC transporters regulate plasma membrane organization?.

Wu A, Wojtowicz K, Savary S, Hamon Y, Trombik T Cell Mol Biol Lett. 2020; 25:37.

PMID: 32647530 PMC: 7336681. DOI: 10.1186/s11658-020-00224-x.


Fluorescence strategies for mapping cell membrane dynamics and structures.

Sankaran J, Wohland T APL Bioeng. 2020; 4(2):020901.

PMID: 32478279 PMC: 7228782. DOI: 10.1063/1.5143945.


References
1.
Axelrod D . Cell surface heating during fluorescence photobleaching recovery experiments. Biophys J. 1977; 18(1):129-31. PMC: 1473274. DOI: 10.1016/S0006-3495(77)85601-4. View

2.
Klausner R, Kleinfeld A, Hoover R, Karnovsky M . Lipid domains in membranes. Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. J Biol Chem. 1980; 255(4):1286-95. View

3.
Wolf D, Kinsey W, Lennarz W, Edidin M . Changes in the organization of the sea urchin egg plasma membrane upon fertilization: indications from the lateral diffusion rates of lipid-soluble fluorescent dyes. Dev Biol. 1981; 81(1):133-8. DOI: 10.1016/0012-1606(81)90355-9. View

4.
Klausner R, Wolf D . Selectivity of fluorescent lipid analogues for lipid domains. Biochemistry. 1980; 19(26):6199-203. DOI: 10.1021/bi00567a039. View

5.
Wolf D, Edidin M, Handyside A . Changes in the organization of the mouse egg plasma membrane upon fertilization and first cleavage: indications from the lateral diffusion rates of fluorescent lipid analogs. Dev Biol. 1981; 85(1):195-8. DOI: 10.1016/0012-1606(81)90250-5. View