» Articles » PMID: 22514277

P53 Basic C Terminus Regulates P53 Functions Through DNA Binding Modulation of Subset of Target Genes

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2012 Apr 20
PMID 22514277
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

The p53 gene encodes a transcription factor that is composed of several functional domains: the N-terminal transactivation domain, the central sequence-specific DNA binding domain, the tetramerization domain, and the highly basic C-terminal regulatory domain (CTD). The p53 CTD is a nonspecific DNA binding domain that is subject to extensive post-translational modifications. However, the functional significance of the p53 CTD remains unclear. The role of this domain in the regulation of p53 functions is explored by comparing the activity of ectopically expressed wild-type (WT) p53 protein to that of a truncated mutant lacking the 24 terminal amino acids (Δ24). Using quantitative real time PCR and chromatin Immuno-Precipitation experiments, a p53 CTD deletion is shown to alter the p53-dependent induction of a subset of its target genes due to impaired specific DNA binding. Moreover, p53-induced growth arrest and apoptosis both require an intact p53 CTD. These data indicate that the p53 CTD is a positive regulator of p53 tumor suppressor functions.

Citing Articles

How does p53 work? Regulation by the intrinsically disordered domains.

Dyson H, Wright P Trends Biochem Sci. 2024; 50(1):9-17.

PMID: 39578215 PMC: 11698644. DOI: 10.1016/j.tibs.2024.10.009.


Navigating the complexity of p53-DNA binding: implications for cancer therapy.

Thayer K, Stetson S, Caballero F, Chiu C, Han I Biophys Rev. 2024; 16(4):479-496.

PMID: 39309126 PMC: 11415564. DOI: 10.1007/s12551-024-01207-4.


Regulation of the p53‑mediated ferroptosis signaling pathway in cerebral ischemia stroke (Review).

Xu S, Li X, Wang Y Exp Ther Med. 2023; 25(3):113.

PMID: 36793330 PMC: 9922943. DOI: 10.3892/etm.2023.11812.


Mapping Interactions of the Intrinsically Disordered C-Terminal Regions of Tetrameric p53 by Segmental Isotope Labeling and NMR.

Krois A, Park S, Martinez-Yamout M, Dyson H, Wright P Biochemistry. 2022; 61(23):2709-2719.

PMID: 36380579 PMC: 9788666. DOI: 10.1021/acs.biochem.2c00528.


Oligomerization of Mutant p53 R273H is not Required for Gain-of-Function Chromatin Associated Activities.

Annor G, Elshabassy N, Lundine D, Conde D, Xiao G, Ellison V Front Cell Dev Biol. 2021; 9:772315.

PMID: 34881245 PMC: 8645790. DOI: 10.3389/fcell.2021.772315.


References
1.
Kim H, Kim K, Choi J, Heo K, Baek H, Roeder R . p53 requires an intact C-terminal domain for DNA binding and transactivation. J Mol Biol. 2011; 415(5):843-54. PMC: 3267882. DOI: 10.1016/j.jmb.2011.12.001. View

2.
Olsson A, Manzl C, Strasser A, Villunger A . How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression?. Cell Death Differ. 2007; 14(9):1561-75. DOI: 10.1038/sj.cdd.4402196. View

3.
Liu Y, Lagowski J, Vanderbeek G, Kulesz-Martin M . Facilitated search for specific genomic targets by p53 C-terminal basic DNA binding domain. Cancer Biol Ther. 2004; 3(11):1102-8. DOI: 10.4161/cbt.3.11.1189. View

4.
Tafvizi A, Huang F, Fersht A, Mirny L, van Oijen A . A single-molecule characterization of p53 search on DNA. Proc Natl Acad Sci U S A. 2010; 108(2):563-8. PMC: 3021058. DOI: 10.1073/pnas.1016020107. View

5.
Bourdon J . p53 and its isoforms in cancer. Br J Cancer. 2007; 97(3):277-82. PMC: 2360320. DOI: 10.1038/sj.bjc.6603886. View