» Articles » PMID: 22796662

Wisdom of Crowds for Robust Gene Network Inference

Overview
Journal Nat Methods
Date 2012 Jul 17
PMID 22796662
Citations 717
Authors
Affiliations
Soon will be listed here.
Abstract

Reconstructing gene regulatory networks from high-throughput data is a long-standing challenge. Through the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project, we performed a comprehensive blind assessment of over 30 network inference methods on Escherichia coli, Staphylococcus aureus, Saccharomyces cerevisiae and in silico microarray data. We characterize the performance, data requirements and inherent biases of different inference approaches, and we provide guidelines for algorithm application and development. We observed that no single inference method performs optimally across all data sets. In contrast, integration of predictions from multiple inference methods shows robust and high performance across diverse data sets. We thereby constructed high-confidence networks for E. coli and S. aureus, each comprising ~1,700 transcriptional interactions at a precision of ~50%. We experimentally tested 53 previously unobserved regulatory interactions in E. coli, of which 23 (43%) were supported. Our results establish community-based methods as a powerful and robust tool for the inference of transcriptional gene regulatory networks.

Citing Articles

A large-scale benchmark for network inference from single-cell perturbation data.

Chevalley M, Roohani Y, Mehrjou A, Leskovec J, Schwab P Commun Biol. 2025; 8(1):412.

PMID: 40069299 PMC: 11897147. DOI: 10.1038/s42003-025-07764-y.


A high-resolution model of gene expression during Gossypium hirsutum (cotton) fiber development.

Grover C, Jareczek J, Swaminathan S, Lee Y, Howell A, Rani H BMC Genomics. 2025; 26(1):221.

PMID: 40050725 PMC: 11884195. DOI: 10.1186/s12864-025-11360-z.


GCLink: a graph contrastive link prediction framework for gene regulatory network inference.

Yu W, Lin Z, Lan M, Ou-Yang L Bioinformatics. 2025; 41(3).

PMID: 39960893 PMC: 11881698. DOI: 10.1093/bioinformatics/btaf074.


Interpretable AI for inference of causal molecular relationships from omics data.

Dibaeinia P, Ojha A, Sinha S Sci Adv. 2025; 11(7):eadk0837.

PMID: 39951525 PMC: 11827637. DOI: 10.1126/sciadv.adk0837.


Leveraging prior knowledge to infer gene regulatory networks from single-cell RNA-sequencing data.

Stock M, Losert C, Zambon M, Popp N, Lubatti G, Hormanseder E Mol Syst Biol. 2025; 21(3):214-230.

PMID: 39939367 PMC: 11876610. DOI: 10.1038/s44320-025-00088-3.


References
1.
di Bernardo D, Thompson M, Gardner T, Chobot S, Eastwood E, Wojtovich A . Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat Biotechnol. 2005; 23(3):377-83. DOI: 10.1038/nbt1075. View

2.
Butte A, Kohane I . Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac Symp Biocomput. 2000; :418-29. DOI: 10.1142/9789814447331_0040. View

3.
Marbach D, Mattiussi C, Floreano D . Combining multiple results of a reverse-engineering algorithm: application to the DREAM five-gene network challenge. Ann N Y Acad Sci. 2009; 1158:102-13. DOI: 10.1111/j.1749-6632.2008.03945.x. View

4.
Marbach D, Prill R, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G . Revealing strengths and weaknesses of methods for gene network inference. Proc Natl Acad Sci U S A. 2010; 107(14):6286-91. PMC: 2851985. DOI: 10.1073/pnas.0913357107. View

5.
De Smet R, Marchal K . Advantages and limitations of current network inference methods. Nat Rev Microbiol. 2010; 8(10):717-29. DOI: 10.1038/nrmicro2419. View