» Articles » PMID: 22710113

Broadening the Spectrum of β-lactam Antibiotics Through Inhibition of Signal Peptidase Type I

Abstract

The resistance of methicillin-resistant Staphylococcus aureus (MRSA) to all β-lactam classes limits treatment options for serious infections involving this organism. Our goal is to discover new agents that restore the activity of β-lactams against MRSA, an approach that has led to the discovery of two classes of natural product antibiotics, a cyclic depsipeptide (krisynomycin) and a lipoglycopeptide (actinocarbasin), which potentiate the activity of imipenem against MRSA strain COL. We report here that these imipenem synergists are inhibitors of the bacterial type I signal peptidase SpsB, a serine protease that is required for the secretion of proteins that are exported through the Sec and Tat systems. A synthetic derivative of actinocarbasin, M131, synergized with imipenem both in vitro and in vivo with potent efficacy. The in vitro activity of M131 extends to clinical isolates of MRSA but not to a methicillin-sensitive strain. Synergy is restricted to β-lactam antibiotics and is not observed with other antibiotic classes. We propose that the SpsB inhibitors synergize with β-lactams by preventing the signal peptidase-mediated secretion of proteins required for β-lactam resistance. Combinations of SpsB inhibitors and β-lactams may expand the utility of these widely prescribed antibiotics to treat MRSA infections, analogous to β-lactamase inhibitors which restored the utility of this antibiotic class for the treatment of resistant Gram-negative infections.

Citing Articles

Cyclization by Intramolecular Suzuki-Miyaura Cross-Coupling-A Review.

Caso C, Altmann K Chemistry. 2024; 31(1):e202402664.

PMID: 39385337 PMC: 11711311. DOI: 10.1002/chem.202402664.


Unraveling the mechanism of small molecule induced activation of Staphylococcus aureus signal peptidase IB.

Chen S, Fiedler M, Gronauer T, Omelko O, von Wrisberg M, Wang T Commun Biol. 2024; 7(1):895.

PMID: 39043865 PMC: 11266668. DOI: 10.1038/s42003-024-06575-x.


Lipid Tales: Optimizing Arylomycin Membrane Anchors.

Koehler M, Chen Y, Chen Y, Chen Y, Crawford J, Durk M ACS Med Chem Lett. 2023; 14(11):1524-1530.

PMID: 37974942 PMC: 10641904. DOI: 10.1021/acsmedchemlett.3c00327.


Unrealized targets in the discovery of antibiotics for Gram-negative bacterial infections.

Theuretzbacher U, Blasco B, Duffey M, Piddock L Nat Rev Drug Discov. 2023; 22(12):957-975.

PMID: 37833553 DOI: 10.1038/s41573-023-00791-6.


Naturally Occurring Organohalogen Compounds-A Comprehensive Review.

Gribble G Prog Chem Org Nat Prod. 2023; 121:1-546.

PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1.


References
1.
Campbell J, Singh A, Santa Maria Jr J, Kim Y, Brown S, Swoboda J . Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. ACS Chem Biol. 2010; 6(1):106-16. PMC: 3025082. DOI: 10.1021/cb100269f. View

2.
Pinho M, de Lencastre H, Tomasz A . An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci. Proc Natl Acad Sci U S A. 2001; 98(19):10886-91. PMC: 58569. DOI: 10.1073/pnas.191260798. View

3.
Tan C, Therien A, Lu J, Lee S, Caron A, Gill C . Restoring methicillin-resistant Staphylococcus aureus susceptibility to β-lactam antibiotics. Sci Transl Med. 2012; 4(126):126ra35. DOI: 10.1126/scitranslmed.3003592. View

4.
Donald R, Skwish S, Forsyth R, Anderson J, Zhong T, Burns C . A Staphylococcus aureus fitness test platform for mechanism-based profiling of antibacterial compounds. Chem Biol. 2009; 16(8):826-36. DOI: 10.1016/j.chembiol.2009.07.004. View

5.
Henze U, Sidow T, Wecke J, Labischinski H, Berger-Bachi B . Influence of femB on methicillin resistance and peptidoglycan metabolism in Staphylococcus aureus. J Bacteriol. 1993; 175(6):1612-20. PMC: 203954. DOI: 10.1128/jb.175.6.1612-1620.1993. View