» Articles » PMID: 22504883

Structure of the C(10) Ring of the Yeast Mitochondrial ATP Synthase in the Open Conformation

Overview
Date 2012 Apr 17
PMID 22504883
Citations 65
Authors
Affiliations
Soon will be listed here.
Abstract

The proton pore of the F(1)F(o) ATP synthase consists of a ring of c subunits, which rotates, driven by downhill proton diffusion across the membrane. An essential carboxylate side chain in each subunit provides a proton-binding site. In all the structures of c-rings reported to date, these sites are in a closed, ion-locked state. Structures are here presented of the c(10) ring from Saccharomyces cerevisiae determined at pH 8.3, 6.1 and 5.5, at resolutions of 2.0 Å, 2.5 Å and 2.0 Å, respectively. The overall structure of this mitochondrial c-ring is similar to known homologs, except that the essential carboxylate, Glu59, adopts an open extended conformation. Molecular dynamics simulations reveal that opening of the essential carboxylate is a consequence of the amphiphilic nature of the crystallization buffer. We propose that this new structure represents the functionally open form of the c subunit, which facilitates proton loading and release.

Citing Articles

Electric Forces and ATP Synthesis.

McCaig C Rev Physiol Biochem Pharmacol. 2025; 187():419-452.

PMID: 39838021 DOI: 10.1007/978-3-031-68827-0_20.


Mitochondrial ATP generation is more proteome efficient than glycolysis.

Shen Y, Dinh H, Cruz E, Chen Z, Bartman C, Xiao T Nat Chem Biol. 2024; 20(9):1123-1132.

PMID: 38448734 DOI: 10.1038/s41589-024-01571-y.


1,3,8-Triazaspiro[4.5]decane Derivatives Inhibit Permeability Transition Pores through a F-ATP Synthase c Subunit Glu-Independent Mechanism That Prevents Oligomycin A-Related Side Effects.

Pedriali G, Ramaccini D, Bouhamida E, Branchini A, Turrin G, Tonet E Int J Mol Sci. 2023; 24(7).

PMID: 37047160 PMC: 10094280. DOI: 10.3390/ijms24076191.


Yeast as a tool for membrane protein production and structure determination.

Carlesso A, Delgado R, Ruiz Isant O, Uwangue O, Valli D, Bill R FEMS Yeast Res. 2022; 22(1).

PMID: 36175165 PMC: 9584064. DOI: 10.1093/femsyr/foac047.


Mechanisms of membrane protein crystallization in 'bicelles'.

Murugova T, Ivankov O, Ryzhykau Y, Soloviov D, Kovalev K, Skachkova D Sci Rep. 2022; 12(1):11109.

PMID: 35773455 PMC: 9246360. DOI: 10.1038/s41598-022-13945-0.


References
1.
Staritzbichler R, Anselmi C, Forrest L, Faraldo-Gomez J . GRIFFIN: A versatile methodology for optimization of protein-lipid interfaces for membrane protein simulations. J Chem Theory Comput. 2014; 7(4):1167-1176. PMC: 3972769. DOI: 10.1021/ct100576m. View

2.
Mizutani K, Yamamoto M, Suzuki K, Yamato I, Kakinuma Y, Shirouzu M . Structure of the rotor ring modified with N,N'-dicyclohexylcarbodiimide of the Na+-transporting vacuolar ATPase. Proc Natl Acad Sci U S A. 2011; 108(33):13474-9. PMC: 3158168. DOI: 10.1073/pnas.1103287108. View

3.
Preiss L, Yildiz O, Hicks D, Krulwich T, Meier T . A new type of proton coordination in an F(1)F(o)-ATP synthase rotor ring. PLoS Biol. 2010; 8(8):e1000443. PMC: 2914638. DOI: 10.1371/journal.pbio.1000443. View

4.
Abrahams J, Leslie A, Lutter R, Walker J . Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature. 1994; 370(6491):621-8. DOI: 10.1038/370621a0. View

5.
Baker N, Sept D, Joseph S, Holst M, McCammon J . Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A. 2001; 98(18):10037-41. PMC: 56910. DOI: 10.1073/pnas.181342398. View