» Articles » PMID: 21317873

Subunit-selective N-terminal Domain Associations Organize the Formation of AMPA Receptor Heteromers

Overview
Journal EMBO J
Date 2011 Feb 15
PMID 21317873
Citations 69
Authors
Affiliations
Soon will be listed here.
Abstract

The assembly of AMPA-type glutamate receptors (AMPARs) into distinct ion channel tetramers ultimately governs the nature of information transfer at excitatory synapses. How cells regulate the formation of diverse homo- and heteromeric AMPARs is unknown. Using a sensitive biophysical approach, we show that the extracellular, membrane-distal AMPAR N-terminal domains (NTDs) orchestrate selective routes of heteromeric assembly via a surprisingly wide spectrum of subunit-specific association affinities. Heteromerization is dominant, occurs at the level of the dimer, and results in a preferential incorporation of the functionally critical GluA2 subunit. Using a combination of structure-guided mutagenesis and electrophysiology, we further map evolutionarily variable hotspots in the NTD dimer interface, which modulate heteromerization capacity. This 'flexibility' of the NTD not only explains why heteromers predominate but also how GluA2-lacking, Ca(2+)-permeable homomers could form, which are induced under specific physiological and pathological conditions. Our findings reveal that distinct NTD properties set the stage for the biogenesis of functionally diverse pools of homo- and heteromeric AMPAR tetramers.

Citing Articles

Female mice lacking GluA3 show early onset of hearing loss, cochlear synaptopathy, and afferent terminal swellings in ambient sound levels.

Pal I, Bhattacharyya A, V-Ghaffari B, Williams E, Xiao M, Rutherford M iScience. 2025; 28(2):111799.

PMID: 39935454 PMC: 11810710. DOI: 10.1016/j.isci.2025.111799.


Amyloid-β-Driven Synaptic Deficits Are Mediated by Synaptic Removal of GluA3-Containing AMPA Receptors.

Reinders N, van der Spek S, Klaassen R, Koymans K, MacGillavry H, Smit A J Neurosci. 2025; 45(9).

PMID: 39779375 PMC: 11867010. DOI: 10.1523/JNEUROSCI.0393-24.2024.


Proton-triggered rearrangement of the AMPA receptor N-terminal domains impacts receptor kinetics and synaptic localization.

Ivica J, Kejzar N, Ho H, Stockwell I, Kuchtiak V, Scrutton A Nat Struct Mol Biol. 2024; 31(10):1601-1613.

PMID: 39138332 PMC: 11479944. DOI: 10.1038/s41594-024-01369-5.


Allosteric competition and inhibition in AMPA receptors.

Hale W, Romero A, Gonzalez C, Jayaraman V, Lau A, Huganir R Nat Struct Mol Biol. 2024; 31(11):1669-1679.

PMID: 38834914 PMC: 11563869. DOI: 10.1038/s41594-024-01328-0.


Tuning synaptic strength by regulation of AMPA glutamate receptor localization.

Stockwell I, Watson J, Greger I Bioessays. 2024; 46(7):e2400006.

PMID: 38693811 PMC: 7616278. DOI: 10.1002/bies.202400006.


References
1.
Aricescu A, Lu W, Jones E . A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr D Biol Crystallogr. 2006; 62(Pt 10):1243-50. DOI: 10.1107/S0907444906029799. View

2.
Cull-Candy S, Kelly L, Farrant M . Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond. Curr Opin Neurobiol. 2006; 16(3):288-97. DOI: 10.1016/j.conb.2006.05.012. View

3.
Rajagopalan S, Jaulent A, Wells M, Veprintsev D, Fersht A . 14-3-3 activation of DNA binding of p53 by enhancing its association into tetramers. Nucleic Acids Res. 2008; 36(18):5983-91. PMC: 2566891. DOI: 10.1093/nar/gkn598. View

4.
Zheng J, Zagotta W . Stoichiometry and assembly of olfactory cyclic nucleotide-gated channels. Neuron. 2004; 42(3):411-21. DOI: 10.1016/s0896-6273(04)00253-3. View

5.
Shanks N, Maruo T, Farina A, Ellisman M, Nakagawa T . Contribution of the global subunit structure and stargazin on the maturation of AMPA receptors. J Neurosci. 2010; 30(7):2728-40. PMC: 2842908. DOI: 10.1523/JNEUROSCI.5146-09.2010. View