» Articles » PMID: 38693811

Tuning Synaptic Strength by Regulation of AMPA Glutamate Receptor Localization

Overview
Journal Bioessays
Publisher Wiley
Date 2024 May 2
PMID 38693811
Authors
Affiliations
Soon will be listed here.
Abstract

Long-term potentiation (LTP) of excitatory synapses is a leading model to explain the concept of information storage in the brain. Multiple mechanisms contribute to LTP, but central amongst them is an increased sensitivity of the postsynaptic membrane to neurotransmitter release. This sensitivity is predominantly determined by the abundance and localization of AMPA-type glutamate receptors (AMPARs). A combination of AMPAR structural data, super-resolution imaging of excitatory synapses, and an abundance of electrophysiological studies are providing an ever-clearer picture of how AMPARs are recruited and organized at synaptic junctions. Here, we review the latest insights into this process, and discuss how both cytoplasmic and extracellular receptor elements cooperate to tune the AMPAR response at the hippocampal CA1 synapse.

Citing Articles

Dopamine increases protein synthesis in hippocampal neurons enabling dopamine-dependent LTP.

Fuchsberger T, Stockwell I, Woods M, Brzosko Z, Greger I, Paulsen O Elife. 2025; 13.

PMID: 40063079 PMC: 11893101. DOI: 10.7554/eLife.100822.


AMPA receptor diffusional trapping machinery as an early therapeutic target in neurodegenerative and neuropsychiatric disorders.

Choquet D, Opazo P, Zhang H Transl Neurodegener. 2025; 14(1):8.

PMID: 39934896 PMC: 11817889. DOI: 10.1186/s40035-025-00470-z.


The GluA1 cytoplasmic tail regulates intracellular AMPA receptor trafficking and synaptic transmission onto dentate gyrus GABAergic interneurons, gating response to novelty.

Leana-Sandoval G, Kolli A, Chinn C, Madrid A, Lo I, Sandoval M bioRxiv. 2024; .

PMID: 39677714 PMC: 11643017. DOI: 10.1101/2024.12.01.626277.


The VGCC auxiliary subunit α2δ1 is an extracellular GluA1 interactor and regulates LTP, spatial memory, and seizure susceptibility.

Leana-Sandoval G, Kolli A, Sandoval M, Saavedra E, Li K, Chen L bioRxiv. 2024; .

PMID: 39677598 PMC: 11642997. DOI: 10.1101/2024.12.02.626379.


Structure and Topography of AMPA Receptor Scaffolding Complexes Visualized by CryoET.

Held R, Liang J, Esquivies L, Khan Y, Wang C, Azubel M bioRxiv. 2024; .

PMID: 39464045 PMC: 11507944. DOI: 10.1101/2024.10.19.619226.


References
1.
Diering G, Huganir R . The AMPA Receptor Code of Synaptic Plasticity. Neuron. 2018; 100(2):314-329. PMC: 6214363. DOI: 10.1016/j.neuron.2018.10.018. View

2.
Plant K, Pelkey K, Bortolotto Z, Morita D, Terashima A, McBain C . Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nat Neurosci. 2006; 9(5):602-4. DOI: 10.1038/nn1678. View

3.
Hosokawa T, Liu P, Cai Q, Ferreira J, Levet F, Butler C . CaMKII activation persistently segregates postsynaptic proteins via liquid phase separation. Nat Neurosci. 2021; 24(6):777-785. DOI: 10.1038/s41593-021-00843-3. View

4.
Baranovic J, Plested A . Auxiliary subunits keep AMPA receptors compact during activation and desensitization. Elife. 2018; 7. PMC: 6324883. DOI: 10.7554/eLife.40548. View

5.
Nicoll R, Schulman H . Synaptic memory and CaMKII. Physiol Rev. 2023; 103(4):2877-2925. PMC: 10642921. DOI: 10.1152/physrev.00034.2022. View