» Articles » PMID: 21273450

Microtubule Stabilization Reduces Scarring and Causes Axon Regeneration After Spinal Cord Injury

Overview
Journal Science
Specialty Science
Date 2011 Jan 29
PMID 21273450
Citations 298
Authors
Affiliations
Soon will be listed here.
Abstract

Hypertrophic scarring and poor intrinsic axon growth capacity constitute major obstacles for spinal cord repair. These processes are tightly regulated by microtubule dynamics. Here, moderate microtubule stabilization decreased scar formation after spinal cord injury in rodents through various cellular mechanisms, including dampening of transforming growth factor-β signaling. It prevented accumulation of chondroitin sulfate proteoglycans and rendered the lesion site permissive for axon regeneration of growth-competent sensory neurons. Microtubule stabilization also promoted growth of central nervous system axons of the Raphe-spinal tract and led to functional improvement. Thus, microtubule stabilization reduces fibrotic scarring and enhances the capacity of axons to grow.

Citing Articles

Fidgetin-like 2 knockdown increases acute neuroinflammation and improves recovery in a rat model of spinal cord injury.

Smith A, Nagrabski S, Baker L, Kramer A, Sharp D, Byrnes K J Neuroinflammation. 2025; 22(1):73.

PMID: 40065364 PMC: 11895163. DOI: 10.1186/s12974-025-03344-3.


Scientific Advances in Neural Regeneration After Spinal Cord Injury.

Gartit M, Noumairi M, Rhoul A, Mahla H, El Anbari Y, El Oumri A Cureus. 2025; 17(2):e78630.

PMID: 40062077 PMC: 11890103. DOI: 10.7759/cureus.78630.


Axon-specific microtubule regulation drives asymmetric regeneration of sensory neuron axons.

Costa A, Murillo B, Bessa R, Ribeiro R, Ferreira da Silva T, Porfirio-Rodrigues P Elife. 2025; 13.

PMID: 39992313 PMC: 11850000. DOI: 10.7554/eLife.104069.


Filamented hydrogels as tunable conduits for guiding neurite outgrowth.

Liu H, Puiggali-Jou A, Chansoria P, Janiak J, Zenobi-Wong M Mater Today Bio. 2025; 31:101471.

PMID: 39896275 PMC: 11787030. DOI: 10.1016/j.mtbio.2025.101471.


A cryo-shocked M2 macrophages based treatment strategy promoting repair of spinal cord injury via immunomodulation and axonal regeneration effects.

Lu E, Zhou K, Miao J, Zhu Y, Tang J, Du S J Nanobiotechnology. 2025; 23(1):8.

PMID: 39757205 PMC: 11702283. DOI: 10.1186/s12951-024-03018-x.


References
1.
Moses H, Coffey Jr R, Leof E, Lyons R, Keski-Oja J . Transforming growth factor beta regulation of cell proliferation. J Cell Physiol Suppl. 1987; Suppl 5:1-7. DOI: 10.1002/jcp.1041330403. View

2.
Klapka N, Muller H . Collagen matrix in spinal cord injury. J Neurotrauma. 2006; 23(3-4):422-35. DOI: 10.1089/neu.2006.23.422. View

3.
Scheff S, Rabchevsky A, Fugaccia I, Main J, Lumpp Jr J . Experimental modeling of spinal cord injury: characterization of a force-defined injury device. J Neurotrauma. 2003; 20(2):179-93. DOI: 10.1089/08977150360547099. View

4.
Okada S, Nakamura M, Katoh H, Miyao T, Shimazaki T, Ishii K . Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med. 2006; 12(7):829-34. DOI: 10.1038/nm1425. View

5.
Silver J, Miller J . Regeneration beyond the glial scar. Nat Rev Neurosci. 2004; 5(2):146-56. DOI: 10.1038/nrn1326. View