» Articles » PMID: 19619491

Reciprocal Requirements for EDA/EDAR/NF-kappaB and Wnt/beta-catenin Signaling Pathways in Hair Follicle Induction

Abstract

Wnt/beta-catenin and NF-kappaB signaling mechanisms provide central controls in development and disease, but how these pathways intersect is unclear. Using hair follicle induction as a model system, we show that patterning of dermal Wnt/beta-catenin signaling requires epithelial beta-catenin activity. We find that Wnt/beta-catenin signaling is absolutely required for NF-kappaB activation, and that Edar is a direct Wnt target gene. Wnt/beta-catenin signaling is initially activated independently of EDA/EDAR/NF-kappaB activity in primary hair follicle primordia. However, Eda/Edar/NF-kappaB signaling is required to refine the pattern of Wnt/beta-catenin activity, and to maintain this activity at later stages of placode development. We show that maintenance of localized expression of Wnt10b and Wnt10a requires NF-kappaB signaling, providing a molecular explanation for the latter observation, and identify Wnt10b as a direct NF-kappaB target. These data reveal a complex interplay and interdependence of Wnt/beta-catenin and EDA/EDAR/NF-kappaB signaling pathways in initiation and maintenance of primary hair follicle placodes.

Citing Articles

Wnt signaling modulates mechanotransduction in the epidermis to drive hair follicle regeneration.

Oak A, Bagchi A, Brukman M, Toth J, Ford J, Zheng Y Sci Adv. 2025; 11(8):eadq0638.

PMID: 39970220 PMC: 11838001. DOI: 10.1126/sciadv.adq0638.


Network analysis reveals potential mechanisms that determine the cellular identity of keratinocytes and corneal epithelial cells through the Hox/Gtl2-Dio3 miRNA axis.

Guo Y, Wu W, Chen H, Wang X, Zhang Y, Li S Front Cell Dev Biol. 2025; 13:1475334.

PMID: 39896421 PMC: 11782130. DOI: 10.3389/fcell.2025.1475334.


Embryonic Mammary Gland Morphogenesis.

Myllymaki S, Lan Q, Mikkola M Adv Exp Med Biol. 2025; 1464():9-27.

PMID: 39821018 DOI: 10.1007/978-3-031-70875-6_2.


Unlocking the genetic secrets of Dorper sheep: insights into wool shedding and hair follicle development.

Yuan X, Meng K, Wang Y, Wang Y, Pan C, Sun H Front Vet Sci. 2024; 11:1489379.

PMID: 39726582 PMC: 11670804. DOI: 10.3389/fvets.2024.1489379.


Phytochemical Compounds as Promising Therapeutics for Intestinal Fibrosis in Inflammatory Bowel Disease: A Critical Review.

Touny A, Venkataraman B, Ojha S, Pessia M, Subramanian V, Hariharagowdru S Nutrients. 2024; 16(21).

PMID: 39519465 PMC: 11547603. DOI: 10.3390/nu16213633.


References
1.
Yu H, Jerchow B, Sheu T, Liu B, Costantini F, Puzas J . The role of Axin2 in calvarial morphogenesis and craniosynostosis. Development. 2005; 132(8):1995-2005. PMC: 1828115. DOI: 10.1242/dev.01786. View

2.
Headon D, Overbeek P . Involvement of a novel Tnf receptor homologue in hair follicle induction. Nat Genet. 1999; 22(4):370-4. DOI: 10.1038/11943. View

3.
Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W . beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell. 2001; 105(4):533-45. DOI: 10.1016/s0092-8674(01)00336-1. View

4.
Naugler W, Karin M . NF-kappaB and cancer-identifying targets and mechanisms. Curr Opin Genet Dev. 2008; 18(1):19-26. PMC: 2587362. DOI: 10.1016/j.gde.2008.01.020. View

5.
Houghton L, Lindon C, Morgan B . The ectodysplasin pathway in feather tract development. Development. 2005; 132(5):863-72. DOI: 10.1242/dev.01651. View