» Articles » PMID: 19249859

Flexible Filaments for in Vivo Imaging and Delivery: Persistent Circulation of Filomicelles Opens the Dosage Window for Sustained Tumor Shrinkage

Overview
Journal Mol Pharm
Specialty Pharmacology
Date 2009 Mar 3
PMID 19249859
Citations 90
Authors
Affiliations
Soon will be listed here.
Abstract

Shape effects of synthetic carriers are largely unexplored in vivo, although recent findings suggest that flexible filaments can persist in the circulation even if microns in length. Here, to better assess biodistribution, a near-infrared fluorophore (NIRF) was incorporated into such block copolymer "filomicelles", and both in vivo and ex vivo imaging show that the majority of these wormlike micelles remain in the circulation for at least a day after intravenous injection. NIRF imaging further suggests that filomicelles convect into a tumor and some fragments can penetrate into the tumor stroma. To assess a functional effect, the hydrophobic drug paclitaxel (tax) was loaded into both filomicelles and sonication-generated spherical micelles of the same copolymer. Intravenous injection of tax-loaded filomicelles nearly doubles the maximum tolerated dose of tax in normal mice compared to tax-loaded spherical micelles. In tumor-bearing mice, the higher dose of tax produces greater and more sustained tumor shrinkage and tumor cell apoptosis. These results thus begin to address mechanisms for how nonspherical carriers deliver both imaging agents and anticancer therapeutics to solid tumors.

Citing Articles

Targeting the tumor microenvironment with biomaterials for enhanced immunotherapeutic efficacy.

Feng Y, Tang Q, Wang B, Yang Q, Zhang Y, Lei L J Nanobiotechnology. 2024; 22(1):737.

PMID: 39605063 PMC: 11603847. DOI: 10.1186/s12951-024-03005-2.


Nanoparticles in CNS Therapeutics: Pioneering Drug Delivery Advancements.

Nayak U, Halagali P, Panchal K, Panchal K, Tippavajhala V, Tippavajhala V Curr Pharm Des. 2024; 31(6):443-460.

PMID: 39318210 DOI: 10.2174/0113816128328722240828184410.


Engineered nanoparticles for precise targeted drug delivery and enhanced therapeutic efficacy in cancer immunotherapy.

Peng X, Fang J, Lou C, Yang L, Shan S, Wang Z Acta Pharm Sin B. 2024; 14(8):3432-3456.

PMID: 39220871 PMC: 11365410. DOI: 10.1016/j.apsb.2024.05.010.


Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy.

Longobardi G, Moore T, Conte C, Ungaro F, Satchi-Fainaro R, Quaglia F Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024; 16(5):e1990.

PMID: 39217459 PMC: 11670051. DOI: 10.1002/wnan.1990.


Drug Integrating Amphiphilic Nano-Assemblies: 2. Spatiotemporal Distribution within Inflammation Sites.

De Toni T, Dal Buono T, Li C, Gonzalez G, Chuang S, Buchwald P Pharmaceutics. 2024; 16(5).

PMID: 38794314 PMC: 11124943. DOI: 10.3390/pharmaceutics16050652.


References
1.
Dalhaimer P, Engler A, Parthasarathy R, Discher D . Targeted worm micelles. Biomacromolecules. 2004; 5(5):1714-9. DOI: 10.1021/bm049884v. View

2.
Kim T, Kim D, Chung J, Shin S, Kim S, Heo D . Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res. 2004; 10(11):3708-16. DOI: 10.1158/1078-0432.CCR-03-0655. View

3.
Guiot C, Degiorgis P, Delsanto P, Gabriele P, Deisboeck T . Does tumor growth follow a "universal law"?. J Theor Biol. 2003; 225(2):147-51. DOI: 10.1016/s0022-5193(03)00221-2. View

4.
Gratton S, Ropp P, Pohlhaus P, Luft J, Madden V, Napier M . The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A. 2008; 105(33):11613-8. PMC: 2575324. DOI: 10.1073/pnas.0801763105. View

5.
Ghoroghchian P, Frail P, Susumu K, Blessington D, Brannan A, Bates F . Near-infrared-emissive polymersomes: self-assembled soft matter for in vivo optical imaging. Proc Natl Acad Sci U S A. 2005; 102(8):2922-7. PMC: 549472. DOI: 10.1073/pnas.0409394102. View