» Articles » PMID: 18601523

Real-time Swept Source Optical Coherence Tomography Imaging of the Human Airway Using a Microelectromechanical System Endoscope and Digital Signal Processor

Overview
Journal J Biomed Opt
Date 2008 Jul 8
PMID 18601523
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

A fast-scan-rate swept laser for optical coherence tomography (OCT) is suitable to record and analyze a 3-D image volume. However, the whole OCT system speed is limited by data streaming, processing, and storage. In this case, postprocessing is a common technique. Endoscopic clinical applications prefer onsite diagnosis, which requires a real-time technique. Parallel digital signal processors were applied to stream and process data directly from a data digitizer. A real-time system with 20-kHz axial line speed, which was limited only by our swept laser scan rate, was implemented. To couple with the system speed, an endoscope based on an improved 3-D microelectromechanical motor (diameter 1.5 mm, length 9.4 mm) was developed. In vivo 3-D imaging of the human airway was demonstrated.

Citing Articles

Circumferential optical coherence tomography angiography imaging of the swine esophagus using a micromotor balloon catheter.

Lee H, Ahsen O, Liang K, Wang Z, Cleveland C, Booth L Biomed Opt Express. 2016; 7(8):2927-42.

PMID: 27570688 PMC: 4986804. DOI: 10.1364/BOE.7.002927.


Ultrahigh speed en face OCT capsule for endoscopic imaging.

Liang K, Traverso G, Lee H, Ahsen O, Wang Z, Potsaid B Biomed Opt Express. 2015; 6(4):1146-63.

PMID: 25909001 PMC: 4399656. DOI: 10.1364/BOE.6.001146.


Diagnosing lung carcinomas with optical coherence tomography.

Hariri L, Mino-Kenudson M, Lanuti M, Miller A, Mark E, Suter M Ann Am Thorac Soc. 2015; 12(2):193-201.

PMID: 25562183 PMC: 4342833. DOI: 10.1513/AnnalsATS.201408-370OC.


Design of a Swept-Source, Anatomical OCT System for Pediatric Bronchoscopy.

Wijesundara K, Iftimia N, Oldenburg A Proc SPIE Int Soc Opt Eng. 2013; 8571.

PMID: 24357912 PMC: 3864962. DOI: 10.1117/12.2004226.


Toward the guidance of transbronchial biopsy: identifying pulmonary nodules with optical coherence tomography.

Hariri L, Mino-Kenudson M, Applegate M, Mark E, Tearney G, Lanuti M Chest. 2013; 144(4):1261-1268.

PMID: 23828441 PMC: 3787917. DOI: 10.1378/chest.13-0534.


References
1.
Wojtkowski M, Srinivasan V, Fujimoto J, Ko T, Schuman J, Kowalczyk A . Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology. 2005; 112(10):1734-46. PMC: 1939719. DOI: 10.1016/j.ophtha.2005.05.023. View

2.
Park B, Pierce M, Cense B, de Boer J . Real-time multi-functional optical coherence tomography. Opt Express. 2009; 11(7):782-93. DOI: 10.1364/oe.11.000782. View

3.
Yun S, Tearney G, Vakoc B, Shishkov M, Oh W, Desjardins A . Comprehensive volumetric optical microscopy in vivo. Nat Med. 2006; 12(12):1429-33. PMC: 2709216. DOI: 10.1038/nm1450. View

4.
Cense B, Nassif N, Chen T, Pierce M, Yun S, Park B . Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt Express. 2009; 12(11):2435-47. DOI: 10.1364/opex.12.002435. View

5.
Oh W, Yun S, Tearney G, Bouma B . 115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser. Opt Lett. 2005; 30(23):3159-61. PMC: 2713038. DOI: 10.1364/ol.30.003159. View