» Articles » PMID: 7711248

Functional Interactions in Bacteriorhodopsin: a Theoretical Analysis of Retinal Hydrogen Bonding with Water

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1995 Jan 1
PMID 7711248
Citations 32
Authors
Affiliations
Soon will be listed here.
Abstract

The light-driven proton pump, bacteriorhodopsin (bR) contains a retinal molecule with a Schiff base moiety that can participate in hydrogen-bonding interactions in an internal, water-containing channel. Here we combine quantum chemistry and molecular mechanics techniques to determine the geometries and energetics of retinal Schiff base-water interactions. Ab initio molecular orbital calculations are used to determine potential surfaces for water-Schiff base hydrogen-bonding and to characterize the energetics of rotation of the C-C single bond distal and adjacent to the Schiff base NH group. The ab initio results are combined with semiempirical quantum chemistry calculations to produce a data set used for the parameterization of a molecular mechanics energy function for retinal. Using the molecular mechanics force field the hydrated retinal and associated bR protein environment are energy-minimized and the resulting geometries examined. Two distinct sites are found in which water molecules can have hydrogen-bonding interactions with the Schiff base: one near the NH group of the Schiff base in a polar region directed towards the extracellular side, and the other near a retinal CH group in a relatively nonpolar region, directed towards the cytoplasmic side.

Citing Articles

Structural insights into light-gating of potassium-selective channelrhodopsin.

Morizumi T, Kim K, Li H, Nag P, Dogon T, Sineshchekov O Nat Commun. 2025; 16(1):1283.

PMID: 39900567 PMC: 11790859. DOI: 10.1038/s41467-025-56491-9.


Structural Foundations of Potassium Selectivity in Channelrhodopsins.

Govorunova E, Sineshchekov O, Brown L, Bondar A, Spudich J mBio. 2022; 13(6):e0303922.

PMID: 36413022 PMC: 9765531. DOI: 10.1128/mbio.03039-22.


Lipid membrane mimetics and oligomerization tune functional properties of proteorhodopsin.

Han C, Nguyen K, Berkow M, Hussain S, Kiani A, Kinnebrew M Biophys J. 2022; 122(1):168-179.

PMID: 36352784 PMC: 9822798. DOI: 10.1016/j.bpj.2022.11.012.


Channelrhodopsin C1C2: Photocycle kinetics and interactions near the central gate.

VanGordon M, Prignano L, Dempski R, Rick S, Rempe S Biophys J. 2021; 120(9):1835-1845.

PMID: 33705762 PMC: 8204341. DOI: 10.1016/j.bpj.2021.03.002.


Quantum Mechanical and Molecular Mechanics Modeling of Membrane-Embedded Rhodopsins.

Ryazantsev M, Nikolaev D, Struts A, Brown M J Membr Biol. 2019; 252(4-5):425-449.

PMID: 31570961 DOI: 10.1007/s00232-019-00095-0.


References
1.
Henderson R, Baldwin J, Ceska T, Zemlin F, Beckmann E, Downing K . Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol. 1990; 213(4):899-929. DOI: 10.1016/S0022-2836(05)80271-2. View

2.
Ulrich A, Watts A, Wallat I, Heyn M . Distorted structure of the retinal chromophore in bacteriorhodopsin resolved by 2H-NMR. Biochemistry. 1994; 33(18):5370-5. DOI: 10.1021/bi00184a003. View

3.
Holz M, Drachev L, Mogi T, Otto H, Kaulen A, Heyn M . Replacement of aspartic acid-96 by asparagine in bacteriorhodopsin slows both the decay of the M intermediate and the associated proton movement. Proc Natl Acad Sci U S A. 1989; 86(7):2167-71. PMC: 286872. DOI: 10.1073/pnas.86.7.2167. View

4.
Marti T, Otto H, Mogi T, Rosselet S, Heyn M, Khorana H . Bacteriorhodopsin mutants containing single substitutions of serine or threonine residues are all active in proton translocation. J Biol Chem. 1991; 266(11):6919-27. View

5.
de Groot H, Smith S, Courtin J, van den Berg E, Winkel C, Lugtenburg J . Solid-state 13C and 15N NMR study of the low pH forms of bacteriorhodopsin. Biochemistry. 1990; 29(29):6873-83. DOI: 10.1021/bi00481a017. View