» Articles » PMID: 25975962

Atomistic Design of Microbial Opsin-based Blue-shifted Optogenetics Tools

Overview
Journal Nat Commun
Specialty Biology
Date 2015 May 16
PMID 25975962
Citations 40
Authors
Affiliations
Soon will be listed here.
Abstract

Microbial opsins with a bound chromophore function as photosensitive ion transporters and have been employed in optogenetics for the optical control of neuronal activity. Molecular engineering has been utilized to create colour variants for the functional augmentation of optogenetics tools, but was limited by the complexity of the protein-chromophore interactions. Here we report the development of blue-shifted colour variants by rational design at atomic resolution, achieved through accurate hybrid molecular simulations, electrophysiology and X-ray crystallography. The molecular simulation models and the crystal structure reveal the precisely designed conformational changes of the chromophore induced by combinatory mutations that shrink its π-conjugated system which, together with electrostatic tuning, produce large blue shifts of the absorption spectra by maximally 100 nm, while maintaining photosensitive ion transport activities. The design principle we elaborate is applicable to other microbial opsins, and clarifies the underlying molecular mechanism of the blue-shifted action spectra of microbial opsins recently isolated from natural sources.

Citing Articles

Robust optogenetic inhibition with red-light-sensitive anion-conducting channelrhodopsins.

Oppermann J, Rozenberg A, Fabrin T, Gonzalez-Cabrera C, Parker R, Beja O Elife. 2024; 12.

PMID: 39401075 PMC: 11473104. DOI: 10.7554/eLife.90100.


RhoMax: Computational Prediction of Rhodopsin Absorption Maxima Using Geometric Deep Learning.

Sela M, Church J, Schapiro I, Schneidman-Duhovny D J Chem Inf Model. 2024; 64(12):4630-4639.

PMID: 38829021 PMC: 11200256. DOI: 10.1021/acs.jcim.4c00467.


Opticool: Cutting-edge transgenic optical tools.

Fenelon K, Krause J, Koromila T PLoS Genet. 2024; 20(3):e1011208.

PMID: 38517915 PMC: 10959397. DOI: 10.1371/journal.pgen.1011208.


Structural basis for ion selectivity in potassium-selective channelrhodopsins.

Tajima S, Kim Y, Fukuda M, Jo Y, Wang P, Paggi J Cell. 2023; 186(20):4325-4344.e26.

PMID: 37652010 PMC: 7615185. DOI: 10.1016/j.cell.2023.08.009.


A blue-shifted anion channelrhodopsin from the Colpodellida alga Vitrella brassicaformis.

Kojima K, Kawanishi S, Nishimura Y, Hasegawa M, Nakao S, Nagata Y Sci Rep. 2023; 13(1):6974.

PMID: 37117398 PMC: 10147648. DOI: 10.1038/s41598-023-34125-8.


References
1.
Wang H, Sugiyama Y, Hikima T, Sugano E, Tomita H, Takahashi T . Molecular determinants differentiating photocurrent properties of two channelrhodopsins from chlamydomonas. J Biol Chem. 2008; 284(9):5685-96. DOI: 10.1074/jbc.M807632200. View

2.
Deisseroth K . Optogenetics. Nat Methods. 2010; 8(1):26-9. PMC: 6814250. DOI: 10.1038/nmeth.f.324. View

3.
Tajkhorshid E, Baudry J, Schulten K, Suhai S . Molecular dynamics study of the nature and origin of retinal's twisted structure in bacteriorhodopsin. Biophys J. 2000; 78(2):683-93. PMC: 1300671. DOI: 10.1016/S0006-3495(00)76626-4. View

4.
Li X, Gutierrez D, Gartz Hanson M, Han J, Mark M, Chiel H . Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci U S A. 2005; 102(49):17816-21. PMC: 1292990. DOI: 10.1073/pnas.0509030102. View

5.
Aston-Jones G, Deisseroth K . Recent advances in optogenetics and pharmacogenetics. Brain Res. 2013; 1511:1-5. PMC: 3663045. DOI: 10.1016/j.brainres.2013.01.026. View