» Articles » PMID: 6956906

Fourier Transform Infrared Difference Spectroscopy of Bacteriorhodopsin and Its Photoproducts

Overview
Specialty Science
Date 1982 Aug 1
PMID 6956906
Citations 51
Authors
Affiliations
Soon will be listed here.
Abstract

Fourier transform infrared difference spectroscopy has been used to obtain the vibrational modes in the chromophore and apoprotein that change in intensity or position between light-adapted bacteriorhodopsin and the K and M intermediates in its photocycle and between dark-adapted and light-adapted bacteriorhodopsin. Our infrared measurements provide independent verification of resonance Raman results that in light-adapted bacteriorhodopsin the protein-chromophore linkage is a protonated Schiff base and in the M state the Schiff base is unprotonated. Although we cannot unambiguously identify the Schiff base stretching frequency in the K state, the most likely interpretation of deuterium shifts of the chromophore hydrogen out-of-plane vibrations is that the Schiff base in K is protonated. The intensity of the hydrogen out-of-plane vibrations in the K state compared with the intensities of those in light-adapted and dark-adapted bacteriorhodopsin shows that the conformation of the chromophore in K is considerably distorted. In addition, we find evidence that the conformation of the protein changes during the photocycle.

Citing Articles

IR-EcoSpectra: Exploring sustainable and FTIR applications for green chemical and pharmaceutical analysis.

Cherniienko A, Lesyk R, Zaprutko L, Pawelczyk A J Pharm Anal. 2024; 14(9):100951.

PMID: 39291244 PMC: 11406085. DOI: 10.1016/j.jpha.2024.02.005.


Introduction of Session 2, "Advanced methods for retinal proteins".

Uchihashi T, Kandori H Biophys Physicobiol. 2024; 20(Supplemental):e201022.

PMID: 38362318 PMC: 10865833. DOI: 10.2142/biophysico.bppb-v20.s022.


Vibrational Spectroscopy of Phytochromes.

Hildebrandt P Biomolecules. 2023; 13(6).

PMID: 37371587 PMC: 10296107. DOI: 10.3390/biom13061007.


Interdisciplinary biophysical studies of membrane proteins bacteriorhodopsin and rhodopsin.

Fahmy K, Sakmar T Biophys Rev. 2023; 15(1):111-125.

PMID: 36909961 PMC: 9995646. DOI: 10.1007/s12551-022-01003-y.


My remembrances of H.G. Khorana: exploring the mechanism of bacteriorhodopsin with site-directed mutagenesis and FTIR difference spectroscopy.

Rothschild K Biophys Rev. 2023; 15(1):103-110.

PMID: 36909952 PMC: 9995631. DOI: 10.1007/s12551-023-01046-9.


References
1.
Stoeckenius W, Lozier R, Bogomolni R . Bacteriorhodopsin and the purple membrane of halobacteria. Biochim Biophys Acta. 1978; 505(3-4):215-78. DOI: 10.1016/0304-4173(79)90006-5. View

2.
Tsuda M, Glaccum M, Nelson B, Ebrey T . Light isomerizes the chromophore of bacteriorhodopsin. Nature. 1980; 287(5780):351-3. DOI: 10.1038/287351a0. View

3.
Oesterhelt D, Schuhmann L, Gruber H . Light-dependent reaction of bacteriorhodopsin with hydroxylamine in cell suspensions of Halobacterium halobium: demonstration of an apo-membrane. FEBS Lett. 1974; 44(3):257-61. DOI: 10.1016/0014-5793(74)81152-x. View

4.
Dupuis P, Harosi F, Sandorfy C, Leclercq J, Vocelle D . First step in vision: proton transfer or isomerization?. Rev Can Biol. 1980; 39(4):247-58. View

5.
Terner J, Campion A, El-Sayed M . Time-resolved resonance Raman spectroscopy of bacteriorhodopsin on the millisecond timescale. Proc Natl Acad Sci U S A. 1977; 74(12):5212-6. PMC: 431655. DOI: 10.1073/pnas.74.12.5212. View