» Articles » PMID: 6950382

Resonance Raman Study of the Primary Photochemistry of Bacteriorhodopsin

Overview
Specialty Science
Date 1981 Dec 1
PMID 6950382
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Resonance Raman multicomponent spectra of the light-adapted form of bacteriorhodopsin, bRLA568, and its first photoproduct, K628, have been obtained at liquid nitrogen temperatures. The spectra of both bRLA568 and K628 could be obtained with the known sample compositions under our irradiating conditions and computer subtraction techniques. In agreement with previous results, we find that both bRLA568 and K628 contain chromophores linked to the apoprotein by protonated Schiff bases of retinal. Neither pigment form, suspended in H2O or 2H2O, compares closely to the spectral features of all-trans and 13-cis protonated and deuterated model chromophores, respectively. The data are consistent with other results, suggesting that a chromophore isomerization takes place in the bRLA568-to-K628 phototransition. However, the exact structure of the in situ chromophore would appear not to involve simple trans-to-13-cis structures found in solution.

Citing Articles

Determination of retinal Schiff base configuration in bacteriorhodopsin.

Smith S, Myers A, Pardoen J, Winkel C, Mulder P, Lugtenburg J Proc Natl Acad Sci U S A. 1984; 81(7):2055-9.

PMID: 16593445 PMC: 345435. DOI: 10.1073/pnas.81.7.2055.


Structural changes during the formation of early intermediates in the bacteriorhodopsin photocycle.

Hayashi S, Tajkhorshid E, Schulten K Biophys J. 2002; 83(3):1281-97.

PMID: 12202355 PMC: 1302228. DOI: 10.1016/S0006-3495(02)73900-3.


Fourier transform infrared difference spectroscopy of bacteriorhodopsin and its photoproducts.

Bagley K, Dollinger G, Eisenstein L, Singh A, Zimanyi L Proc Natl Acad Sci U S A. 1982; 79(16):4972-6.

PMID: 6956906 PMC: 346807. DOI: 10.1073/pnas.79.16.4972.


Infrared evidence that the Schiff base of bacteriorhodopsin is protonated: bR570 and K intermediates.

Rothschild K, Marrero H Proc Natl Acad Sci U S A. 1982; 79(13):4045-9.

PMID: 6955790 PMC: 346573. DOI: 10.1073/pnas.79.13.4045.


Surface potential on purple membranes and its sidedness studied by a resonance Raman dye probe.

Ehrenberg B, Berezin Y Biophys J. 1984; 45(4):663-70.

PMID: 6547064 PMC: 1434902. DOI: 10.1016/S0006-3495(84)84208-3.


References
1.
Stoeckenius W, Lozier R, Bogomolni R . Bacteriorhodopsin and the purple membrane of halobacteria. Biochim Biophys Acta. 1978; 505(3-4):215-78. DOI: 10.1016/0304-4173(79)90006-5. View

2.
Tsuda M, Glaccum M, Nelson B, Ebrey T . Light isomerizes the chromophore of bacteriorhodopsin. Nature. 1980; 287(5780):351-3. DOI: 10.1038/287351a0. View

3.
Becher B, Cassim J . Improved isolation procedures for the purple membrane of Halobacterium halobium. Prep Biochem. 1975; 5(2):161-78. DOI: 10.1080/00327487508061568. View

4.
Terner J, Hsieh C, El-Sayed M . Time-resolved resonance Raman characterization of the bL550 intermediate and the two dark-adapted bRDA/560 forms of bacteriorhodopsin. Biophys J. 1979; 26(3):527-41. PMC: 1328568. DOI: 10.1016/S0006-3495(79)85269-8. View

5.
Oseroff A, Callender R . Resonance Raman spectroscopy of rhodopsin in retinal disk membranes. Biochemistry. 1974; 13(20):4243-8. DOI: 10.1021/bi00717a027. View