Burckhardt R, Escalante-Semerena J
Appl Environ Microbiol. 2019; 85(6).
PMID: 30658980
PMC: 6414380.
DOI: 10.1128/AEM.03029-18.
Sorg R, Lin L, van Doorn G, Sorg M, Olson J, Nizet V
PLoS Biol. 2016; 14(12):e2000631.
PMID: 28027306
PMC: 5189934.
DOI: 10.1371/journal.pbio.2000631.
Walkup 4th W, Kennedy M
Protein Expr Purif. 2014; 98:46-62.
PMID: 24607360
PMC: 4024478.
DOI: 10.1016/j.pep.2014.02.015.
Shaw W, Bentley D, SANDS L
J Bacteriol. 1970; 104(3):1095-105.
PMID: 16559081
PMC: 248265.
DOI: 10.1128/jb.104.3.1095-1105.1970.
Rogers E, Rahman M, Hill R, Lovett P
J Bacteriol. 2002; 184(15):4296-300.
PMID: 12107148
PMC: 135198.
DOI: 10.1128/JB.184.15.4296-4300.2002.
In vitro antibacterial activity of fluorinated analogs of chloramphenicol and thiamphenicol.
Syriopoulou V, Harding A, Goldmann D, Smith A
Antimicrob Agents Chemother. 1981; 19(2):294-7.
PMID: 6957162
PMC: 181412.
DOI: 10.1128/AAC.19.2.294.
Nonenzymatic chloramphenicol resistance determinants specified by plasmids R26 and R55-1 in Escherichia coli K-12 do not confer high-level resistance to fluorinated analogs.
Dorman C, Foster T
Antimicrob Agents Chemother. 1982; 22(5):912-4.
PMID: 6758693
PMC: 185684.
DOI: 10.1128/AAC.22.5.912.
Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria.
Foster T
Microbiol Rev. 1983; 47(3):361-409.
PMID: 6355806
PMC: 281581.
DOI: 10.1128/mr.47.3.361-409.1983.
Plasmid cloning vectors that can be nicked at a unique site.
Bishop J, Davies J
Mol Gen Genet. 1980; 179(3):573-80.
PMID: 6255286
DOI: 10.1007/BF00271747.
Kinetics of induction and purification of chloramphenicol acetyltransferase from chloramphenicol-resistant Staphylococcus aureus.
Winshell E, Shaw W
J Bacteriol. 1969; 98(3):1248-57.
PMID: 4977987
PMC: 315320.
DOI: 10.1128/jb.98.3.1248-1257.1969.
Temperature-sensitive chloramphenicol acetyltransferase from Escherichia coli carrying mutant R factors.
Mise K, Suzuki Y
J Bacteriol. 1968; 95(6):2124-30.
PMID: 4876128
PMC: 315144.
DOI: 10.1128/jb.95.6.2124-2130.1968.
Mechanism of R factor-mediated chloramphenicol resistance.
Shaw W, Unowsky J
J Bacteriol. 1968; 95(5):1976-8.
PMID: 4870290
PMC: 252240.
DOI: 10.1128/jb.95.5.1976-1978.1968.
Mechanism of chloramphenicol resistance in staphylococci: characterization and hybridization of variants of chloramphenicol acetyltransferase.
Sands L, Shaw W
Antimicrob Agents Chemother. 1973; 3(2):299-305.
PMID: 4790593
PMC: 444403.
DOI: 10.1128/AAC.3.2.299.
Hybridization of variants of chloramphenicol acetyltransferase specified by fi + and fi - R factors.
Shaw W, Sands L, Datta N
Proc Natl Acad Sci U S A. 1972; 69(10):3049-53.
PMID: 4628098
PMC: 389704.
DOI: 10.1073/pnas.69.10.3049.
Effect of R-factor-mediated drug-metabolizing enzymes on survival of Escherichia coli K-12 in presence of ampicillin, chloramphenicol, or streptomycin.
Lundback A, Lundback A, Nordstrom K
Antimicrob Agents Chemother. 1974; 5(5):492-9.
PMID: 4618459
PMC: 429001.
DOI: 10.1128/AAC.5.5.492.
Chloramphenicol acetyltransferases specified by fi minus R factors.
Foster T, Shaw W
Antimicrob Agents Chemother. 1973; 3(1):99-104.
PMID: 4597710
PMC: 444367.
DOI: 10.1128/AAC.3.1.99.
New type of R factors incapable of inactivating chloramphenicol.
Nagai Y, Mitsuhashi S
J Bacteriol. 1972; 109(1):1-7.
PMID: 4550661
PMC: 247243.
DOI: 10.1128/jb.109.1.1-7.1972.
Antibiotic inhibitors of the bacterial ribosome.
Weisblum B, Davies J
Bacteriol Rev. 1968; 32(4 Pt 2):493-528.
PMID: 4179192
PMC: 413162.
Posttranscriptional regulation of the inducible nonenzymatic chloramphenicol resistance determinant of IncP plasmid R26.
Dorman C, Foster T
J Bacteriol. 1985; 161(1):147-52.
PMID: 3917998
PMC: 214848.
DOI: 10.1128/jb.161.1.147-152.1985.
Structure of chloramphenicol acetyltransferase at 1.75-A resolution.
Leslie A, Moody P, Shaw W
Proc Natl Acad Sci U S A. 1988; 85(12):4133-7.
PMID: 3288984
PMC: 280380.
DOI: 10.1073/pnas.85.12.4133.