» Articles » PMID: 4612520

Cleavage of Replicating Forms of Mitochondrial DNA by EcoRI Endonuclease

Overview
Specialty Science
Date 1974 Nov 1
PMID 4612520
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Digestion of mouse L cell mitochondrial DNA with EcoRI restriction endonuclease produces two linear duplex fragments comprising 86.3 +/- 2.0% and 14.2 +/- 1.0% of the circular genome length (16,000 +/- 470 nucleotide pairs). Digestion of human HeLa cell mitochondrial DNA with EcoRI produces three linear duplex fragments comprising 49.2 +/- 1.0%, 44.4 +/- 0.9%, and 6.4 +/- 0.4% of the circular genome length (16,590 +/- 710 nucleotide pairs). These fragments are shown to be generated by cleavage in unique regions of the mouse and human mitochondrial DNAs. An electron microscopic analysis of partially replicated molecules cleaved by EcoRI establishes a unidirectional mode of DNA replication for L cell mitochondrial DNA. The origin for DNA replication is located on the larger EcoRI fragment at a position that is 1,890 +/- 250 nucleotide pairs (11.8 +/- 1.2% of the circular genome length) from the proximal restriction site. Replication proceeds unidirectionally away from this restriction site throughout the length of the larger EcoRI fragment. Analysis of L cell, D-loop mitochondrial DNA cleaved by EcoRI indicates that a unique sequence is synthesized in formation of the D-loop in these nonreplicating molecules. The origin of D-loop synthesis is located on the larger EcoRI fragment at a position 1,760 +/- 180 nucleotide pairs (11.0 +/- 1.1% of the circular genome length) from the proximal restriction site and is, therefore, the origin for unidirectional displacement replication.

Citing Articles

Mechanisms and pathologies of human mitochondrial DNA replication and deletion formation.

Bernardino Gomes T, Vincent A, Menger K, Stewart J, Nicholls T Biochem J. 2024; 481(11):683-715.

PMID: 38804971 PMC: 11346376. DOI: 10.1042/BCJ20230262.


Distribution of the core histones H2A.H2B.H3 and H4 during cell replication.

Fowler E, Farb R Nucleic Acids Res. 1982; 10(2):735-48.

PMID: 7063413 PMC: 326181. DOI: 10.1093/nar/10.2.735.


Mitochondrial DNA heteroplasmy in Drosophila mauritiana.

Solignac M, Monnerot M, Mounolou J Proc Natl Acad Sci U S A. 1983; 80(22):6942-6.

PMID: 6316335 PMC: 390102. DOI: 10.1073/pnas.80.22.6942.


Replication priming and transcription initiate from precisely the same site in mouse mitochondrial DNA.

Chang D, Hauswirth W, Clayton D EMBO J. 1985; 4(6):1559-67.

PMID: 2411543 PMC: 554382. DOI: 10.1002/j.1460-2075.1985.tb03817.x.


Length heteroplasmy of sturgeon mitochondrial DNA: an illegitimate elongation model.

Buroker N, Brown J, Gilbert T, OHara P, Beckenbach A, Thomas W Genetics. 1990; 124(1):157-63.

PMID: 1968410 PMC: 1203902. DOI: 10.1093/genetics/124.1.157.


References
1.
Huberman J, Riggs A . On the mechanism of DNA replication in mammalian chromosomes. J Mol Biol. 1968; 32(2):327-41. DOI: 10.1016/0022-2836(68)90013-2. View

2.
Robberson D, Fried M . Sequence arrangements in clonal isolates of polyoma defective DNA. Proc Natl Acad Sci U S A. 1974; 71(9):3497-501. PMC: 433801. DOI: 10.1073/pnas.71.9.3497. View

3.
Robberson D, Aloni Y, Attardi G . Electron microscopic visualization of mitochondrial RNA-DNA hybrids. J Mol Biol. 1971; 55(2):267-70. DOI: 10.1016/0022-2836(71)90196-3. View

4.
Robberson D, Kasamatsu H, Vinograd J . Replication of mitochondrial DNA. Circular replicative intermediates in mouse L cells. Proc Natl Acad Sci U S A. 1972; 69(3):737-41. PMC: 426547. DOI: 10.1073/pnas.69.3.737. View

5.
Fareed G, Garon G, Salzman N . Origin and direction of simian virus 40 deoxyribonucleic acid replication. J Virol. 1972; 10(3):484-91. PMC: 356490. DOI: 10.1128/JVI.10.3.484-491.1972. View