» Articles » PMID: 36203011

High-plex Imaging of RNA and Proteins at Subcellular Resolution in Fixed Tissue by Spatial Molecular Imaging

Abstract

Resolving the spatial distribution of RNA and protein in tissues at subcellular resolution is a challenge in the field of spatial biology. We describe spatial molecular imaging, a system that measures RNAs and proteins in intact biological samples at subcellular resolution by performing multiple cycles of nucleic acid hybridization of fluorescent molecular barcodes. We demonstrate that spatial molecular imaging has high sensitivity (one or two copies per cell) and very low error rate (0.0092 false calls per cell) and background (~0.04 counts per cell). The imaging system generates three-dimensional, super-resolution localization of analytes at ~2 million cells per sample. Cell segmentation is morphology based using antibodies, compatible with formalin-fixed, paraffin-embedded samples. We measured multiomic data (980 RNAs and 108 proteins) at subcellular resolution in formalin-fixed, paraffin-embedded tissues (nonsmall cell lung and breast cancer) and identified >18 distinct cell types, ten unique tumor microenvironments and 100 pairwise ligand-receptor interactions. Data on >800,000 single cells and ~260 million transcripts can be accessed at http://nanostring.com/CosMx-dataset .

Citing Articles

A single-nucleus and spatial transcriptomic atlas of the COVID-19 liver reveals topological, functional, and regenerative organ disruption in patients.

Pita-Juarez Y, Karagkouni D, Kalavros N, Melms J, Niezen S, Delorey T Genome Biol. 2025; 26(1):56.

PMID: 40087773 DOI: 10.1186/s13059-025-03499-5.


Spotiphy enables single-cell spatial whole transcriptomics across an entire section.

Yang J, Zheng Z, Jiao Y, Yu K, Bhatara S, Yang X Nat Methods. 2025; .

PMID: 40074951 DOI: 10.1038/s41592-025-02622-5.


Quantifying and interpreting biologically meaningful spatial signatures within tumor microenvironments.

Jing S, Wang H, Lin P, Yuan J, Tang Z, Li H NPJ Precis Oncol. 2025; 9(1):68.

PMID: 40069556 PMC: 11897387. DOI: 10.1038/s41698-025-00857-1.


Application of Spatial Omics in the Cardiovascular System.

Hu Y, Jia H, Cui H, Song J Research (Wash D C). 2025; 8:0628.

PMID: 40062231 PMC: 11889335. DOI: 10.34133/research.0628.


Scaling up spatial transcriptomics for large-sized tissues: uncovering cellular-level tissue architecture beyond conventional platforms with iSCALE.

Schroeder A, Loth M, Luo C, Yao S, Yan H, Zhang D bioRxiv. 2025; .

PMID: 40060412 PMC: 11888418. DOI: 10.1101/2025.02.25.640190.