» Articles » PMID: 40001084

Batch Correcting Single-cell Spatial Transcriptomics Count Data with Crescendo Improves Visualization and Detection of Spatial Gene Patterns

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2025 Feb 25
PMID 40001084
Authors
Affiliations
Soon will be listed here.
Abstract

Spatial transcriptomics facilitates gene expression analysis of cells in their spatial anatomical context. Batch effects hinder visualization of gene spatial patterns across samples. We present the Crescendo algorithm to correct for batch effects at the gene expression level and enable accurate visualization of gene expression patterns across multiple samples. We show Crescendo's utility and scalability across three datasets ranging from 170,000 to 7 million single cells across spatial and single-cell RNA sequencing technologies. By correcting for batch effects, Crescendo enhances spatial transcriptomics analyses to detect gene colocalization and ligand-receptor interactions and enables cross-technology information transfer.

References
1.
Tanay A, Regev A . Scaling single-cell genomics from phenomenology to mechanism. Nature. 2017; 541(7637):331-338. PMC: 5438464. DOI: 10.1038/nature21350. View

2.
Tyler S, Rotti P, Sun X, Yi Y, Xie W, Winter M . PyMINEr Finds Gene and Autocrine-Paracrine Networks from Human Islet scRNA-Seq. Cell Rep. 2019; 26(7):1951-1964.e8. PMC: 6394844. DOI: 10.1016/j.celrep.2019.01.063. View

3.
Browaeys R, Saelens W, Saeys Y . NicheNet: modeling intercellular communication by linking ligands to target genes. Nat Methods. 2019; 17(2):159-162. DOI: 10.1038/s41592-019-0667-5. View

4.
Preissler J, Grosche A, Lede V, Le Duc D, Krugel K, Matyash V . Altered microglial phagocytosis in GPR34-deficient mice. Glia. 2014; 63(2):206-15. DOI: 10.1002/glia.22744. View

5.
Qiu P . Embracing the dropouts in single-cell RNA-seq analysis. Nat Commun. 2020; 11(1):1169. PMC: 7054558. DOI: 10.1038/s41467-020-14976-9. View