» Articles » PMID: 29551514

Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2018 Mar 20
PMID 29551514
Citations 237
Authors
Affiliations
Soon will be listed here.
Abstract

Bacterial class 2 CRISPR-Cas systems utilize a single RNA-guided protein effector to mitigate viral infection. We aggregated genomic data from multiple sources and constructed an expanded database of predicted class 2 CRISPR-Cas systems. A search for novel RNA-targeting systems identified subtype VI-D, encoding dual HEPN domain-containing Cas13d effectors and putative WYL-domain-containing accessory proteins (WYL1 and WYL-b1 through WYL-b5). The median size of Cas13d proteins is 190 to 300 aa smaller than that of Cas13a-Cas13c. Despite their small size, Cas13d orthologs from Eubacterium siraeum (Es) and Ruminococcus sp. (Rsp) are active in both CRISPR RNA processing and targeting, as well as collateral RNA cleavage, with no target-flanking sequence requirements. The RspWYL1 protein stimulates RNA cleavage by both EsCas13d and RspCas13d, demonstrating a common regulatory mechanism for divergent Cas13d orthologs. The small size, minimal targeting constraints, and modular regulation of Cas13d effectors further expands the CRISPR toolkit for RNA manipulation and detection.

Citing Articles

Multiplexed inhibition of immunosuppressive genes with Cas13d for combinatorial cancer immunotherapy.

Zhang F, Chow R, He E, Dong C, Xin S, Mirza D Nat Biotechnol. 2025; .

PMID: 39820813 DOI: 10.1038/s41587-024-02535-2.


RNA-Targeting CRISPR/CasRx system relieves disease symptoms in Huntington's disease models.

Lin Y, Li C, Chen Y, Gao J, Li J, Huang C Mol Neurodegener. 2025; 20(1):4.

PMID: 39806441 PMC: 11727607. DOI: 10.1186/s13024-024-00794-w.


Dual-targeting CRISPR-CasRx reduces C9orf72 ALS/FTD sense and antisense repeat RNAs in vitro and in vivo.

Kempthorne L, Vaizoglu D, Cammack A, Carcole M, Roberts M, Mikheenko A Nat Commun. 2025; 16(1):459.

PMID: 39779704 PMC: 11711508. DOI: 10.1038/s41467-024-55550-x.


Systemic evaluation of various CRISPR/Cas13 orthologs for knockdown of targeted transcripts in plants.

Yu L, Zou J, Hussain A, Jia R, Fan Y, Liu J Genome Biol. 2024; 25(1):307.

PMID: 39639368 PMC: 11619151. DOI: 10.1186/s13059-024-03448-8.


Genome-scale CRISPRi screening: A powerful tool in engineering microbiology.

Sun L, Zheng P, Sun J, Wendisch V, Wang Y Eng Microbiol. 2024; 3(3):100089.

PMID: 39628933 PMC: 11611010. DOI: 10.1016/j.engmic.2023.100089.


References
1.
Amitai G, Sorek R . CRISPR-Cas adaptation: insights into the mechanism of action. Nat Rev Microbiol. 2016; 14(2):67-76. DOI: 10.1038/nrmicro.2015.14. View

2.
Lorenz R, Bernhart S, Honer Zu Siederdissen C, Tafer H, Flamm C, Stadler P . ViennaRNA Package 2.0. Algorithms Mol Biol. 2011; 6:26. PMC: 3319429. DOI: 10.1186/1748-7188-6-26. View

3.
Koonin E, Makarova K, Zhang F . Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol. 2017; 37:67-78. PMC: 5776717. DOI: 10.1016/j.mib.2017.05.008. View

4.
Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W . Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol. 2017; 15(3):169-182. PMC: 5851899. DOI: 10.1038/nrmicro.2016.184. View

5.
Edgar R . Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010; 26(19):2460-1. DOI: 10.1093/bioinformatics/btq461. View