6.
Armenia J, Wankowicz S, Liu D, Gao J, Kundra R, Reznik E
. The long tail of oncogenic drivers in prostate cancer. Nat Genet. 2018; 50(5):645-651.
PMC: 6107367.
DOI: 10.1038/s41588-018-0078-z.
View
7.
Robinson D, Van Allen E, Wu Y, Schultz N, Lonigro R, Mosquera J
. Integrative clinical genomics of advanced prostate cancer. Cell. 2015; 161(5):1215-1228.
PMC: 4484602.
DOI: 10.1016/j.cell.2015.05.001.
View
8.
Howes T, Sallmyr A, Brooks R, Greco G, Jones D, Matsumoto Y
. Structure-activity relationships among DNA ligase inhibitors: Characterization of a selective uncompetitive DNA ligase I inhibitor. DNA Repair (Amst). 2017; 60:29-39.
PMC: 5881949.
DOI: 10.1016/j.dnarep.2017.10.002.
View
9.
Miao C, Tsujino T, Takai T, Gui F, Tsutsumi T, Sztupinszki Z
. loss overrides PARP inhibitor sensitivity driven by loss in prostate cancer. Sci Adv. 2022; 8(7):eabl9794.
PMC: 8856618.
DOI: 10.1126/sciadv.abl9794.
View
10.
Castro E, Goh C, Olmos D, Saunders E, Leongamornlert D, Tymrakiewicz M
. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol. 2013; 31(14):1748-57.
PMC: 3641696.
DOI: 10.1200/JCO.2012.43.1882.
View
11.
Asim M, Tarish F, Zecchini H, Sanjiv K, Gelali E, Massie C
. Synthetic lethality between androgen receptor signalling and the PARP pathway in prostate cancer. Nat Commun. 2017; 8(1):374.
PMC: 5575038.
DOI: 10.1038/s41467-017-00393-y.
View
12.
Tsujino T, Takai T, Hinohara K, Gui F, Tsutsumi T, Bai X
. CRISPR screens reveal genetic determinants of PARP inhibitor sensitivity and resistance in prostate cancer. Nat Commun. 2023; 14(1):252.
PMC: 9845315.
DOI: 10.1038/s41467-023-35880-y.
View
13.
Quigley D, Dang H, Zhao S, Lloyd P, Aggarwal R, Alumkal J
. Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer. Cell. 2018; 174(3):758-769.e9.
PMC: 6425931.
DOI: 10.1016/j.cell.2018.06.039.
View
14.
Brinkman E, Chen T, Amendola M, van Steensel B
. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 2014; 42(22):e168.
PMC: 4267669.
DOI: 10.1093/nar/gku936.
View
15.
Bhandari S, Wiest N, Sallmyr A, Du R, Tomkinson A
. Redundant but essential functions of PARP1 and PARP2 in DNA ligase I-independent DNA replication. Nucleic Acids Res. 2024; 52(17):10341-10354.
PMC: 11417376.
DOI: 10.1093/nar/gkae672.
View
16.
Dempster J, Boyle I, Vazquez F, Root D, Boehm J, Hahn W
. Chronos: a cell population dynamics model of CRISPR experiments that improves inference of gene fitness effects. Genome Biol. 2021; 22(1):343.
PMC: 8686573.
DOI: 10.1186/s13059-021-02540-7.
View
17.
Paul-Konietzko K, Thomale J, Arakawa H, Iliakis G
. DNA Ligases I and III Support Nucleotide Excision Repair in DT40 Cells with Similar Efficiency. Photochem Photobiol. 2015; 91(5):1173-80.
DOI: 10.1111/php.12487.
View
18.
Li L, Karanika S, Yang G, Wang J, Park S, Broom B
. Androgen receptor inhibitor-induced "BRCAness" and PARP inhibition are synthetically lethal for castration-resistant prostate cancer. Sci Signal. 2017; 10(480).
PMC: 5855082.
DOI: 10.1126/scisignal.aam7479.
View
19.
Doench J, Fusi N, Sullender M, Hegde M, Vaimberg E, Donovan K
. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016; 34(2):184-191.
PMC: 4744125.
DOI: 10.1038/nbt.3437.
View
20.
Wilks C, Zheng S, Chen F, Charles R, Solomon B, Ling J
. recount3: summaries and queries for large-scale RNA-seq expression and splicing. Genome Biol. 2021; 22(1):323.
PMC: 8628444.
DOI: 10.1186/s13059-021-02533-6.
View