6.
Ling A, Gruener R, Fessler J, Huang R
. More than fishing for a cure: The promises and pitfalls of high throughput cancer cell line screens. Pharmacol Ther. 2018; 191:178-189.
PMC: 7001883.
DOI: 10.1016/j.pharmthera.2018.06.014.
View
7.
Roohani Y, Huang K, Leskovec J
. Predicting transcriptional outcomes of novel multigene perturbations with GEARS. Nat Biotechnol. 2023; 42(6):927-935.
PMC: 11180609.
DOI: 10.1038/s41587-023-01905-6.
View
8.
Yadav B, Wennerberg K, Aittokallio T, Tang J
. Searching for Drug Synergy in Complex Dose-Response Landscapes Using an Interaction Potency Model. Comput Struct Biotechnol J. 2016; 13:504-13.
PMC: 4759128.
DOI: 10.1016/j.csbj.2015.09.001.
View
9.
Al-Lazikani B, Banerji U, Workman P
. Combinatorial drug therapy for cancer in the post-genomic era. Nat Biotechnol. 2012; 30(7):679-92.
DOI: 10.1038/nbt.2284.
View
10.
Csermely P, Korcsmaros T, Kiss H, London G, Nussinov R
. Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol Ther. 2013; 138(3):333-408.
PMC: 3647006.
DOI: 10.1016/j.pharmthera.2013.01.016.
View
11.
Kuru H, Tastan O, Cicek A
. MatchMaker: A Deep Learning Framework for Drug Synergy Prediction. IEEE/ACM Trans Comput Biol Bioinform. 2021; 19(4):2334-2344.
DOI: 10.1109/TCBB.2021.3086702.
View
12.
Reinhold W, Sunshine M, Liu H, Varma S, Kohn K, Morris J
. CellMiner: a web-based suite of genomic and pharmacologic tools to explore transcript and drug patterns in the NCI-60 cell line set. Cancer Res. 2012; 72(14):3499-511.
PMC: 3399763.
DOI: 10.1158/0008-5472.CAN-12-1370.
View
13.
Bush E, Ray F, Alvarez M, Realubit R, Li H, Karan C
. PLATE-Seq for genome-wide regulatory network analysis of high-throughput screens. Nat Commun. 2017; 8(1):105.
PMC: 5524642.
DOI: 10.1038/s41467-017-00136-z.
View
14.
Bunne C, Stark S, Gut G, Del Castillo J, Levesque M, Lehmann K
. Learning single-cell perturbation responses using neural optimal transport. Nat Methods. 2023; 20(11):1759-1768.
PMC: 10630137.
DOI: 10.1038/s41592-023-01969-x.
View
15.
Replogle J, Saunders R, Pogson A, Hussmann J, Lenail A, Guna A
. Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq. Cell. 2022; 185(14):2559-2575.e28.
PMC: 9380471.
DOI: 10.1016/j.cell.2022.05.013.
View
16.
Subramanian A, Narayan R, Corsello S, Peck D, Natoli T, Lu X
. A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell. 2017; 171(6):1437-1452.e17.
PMC: 5990023.
DOI: 10.1016/j.cell.2017.10.049.
View
17.
Dong M, Wang B, Wei J, de O Fonseca A, Perry C, Frey A
. Causal identification of single-cell experimental perturbation effects with CINEMA-OT. Nat Methods. 2023; 20(11):1769-1779.
PMC: 10630139.
DOI: 10.1038/s41592-023-02040-5.
View
18.
Schrod S, Schafer A, Solbrig S, Lohmayer R, Gronwald W, Oefner P
. BITES: balanced individual treatment effect for survival data. Bioinformatics. 2022; 38(Suppl 1):i60-i67.
PMC: 9235492.
DOI: 10.1093/bioinformatics/btac221.
View
19.
Preuer K, Lewis R, Hochreiter S, Bender A, Bulusu K, Klambauer G
. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning. Bioinformatics. 2017; 34(9):1538-1546.
PMC: 5925774.
DOI: 10.1093/bioinformatics/btx806.
View
20.
He D, Liu Q, Wu Y, Xie L
. A context-aware deconfounding autoencoder for robust prediction of personalized clinical drug response from cell-line compound screening. Nat Mach Intell. 2024; 4(10):879-892.
PMC: 11185412.
DOI: 10.1038/s42256-022-00541-0.
View