» Articles » PMID: 37770709

Learning Single-cell Perturbation Responses Using Neural Optimal Transport

Overview
Journal Nat Methods
Date 2023 Sep 28
PMID 37770709
Authors
Affiliations
Soon will be listed here.
Abstract

Understanding and predicting molecular responses in single cells upon chemical, genetic or mechanical perturbations is a core question in biology. Obtaining single-cell measurements typically requires the cells to be destroyed. This makes learning heterogeneous perturbation responses challenging as we only observe unpaired distributions of perturbed or non-perturbed cells. Here we leverage the theory of optimal transport and the recent advent of input convex neural architectures to present CellOT, a framework for learning the response of individual cells to a given perturbation by mapping these unpaired distributions. CellOT outperforms current methods at predicting single-cell drug responses, as profiled by scRNA-seq and a multiplexed protein-imaging technology. Further, we illustrate that CellOT generalizes well on unseen settings by (1) predicting the scRNA-seq responses of holdout patients with lupus exposed to interferon-β and patients with glioblastoma to panobinostat; (2) inferring lipopolysaccharide responses across different species; and (3) modeling the hematopoietic developmental trajectories of different subpopulations.

Citing Articles

Decoding heterogeneous single-cell perturbation responses.

Song B, Liu D, Dai W, McMyn N, Wang Q, Yang D Nat Cell Biol. 2025; 27(3):493-504.

PMID: 40011559 PMC: 11906366. DOI: 10.1038/s41556-025-01626-9.


Towards understanding cancer dormancy over strategic hitching up mechanisms to technologies.

Yang S, Seo J, Choi J, Kim S, Kuk Y, Park K Mol Cancer. 2025; 24(1):47.

PMID: 39953555 PMC: 11829473. DOI: 10.1186/s12943-025-02250-9.


Debiasing Sinkhorn divergence in optimal transport of cellular dynamics.

Cooper J, Young C, Lee P bioRxiv. 2025; .

PMID: 39868085 PMC: 11761365. DOI: 10.1101/2025.01.11.632566.


Mapping cells through time and space with moscot.

Klein D, Palla G, Lange M, Klein M, Piran Z, Gander M Nature. 2025; 638(8052):1065-1075.

PMID: 39843746 PMC: 11864987. DOI: 10.1038/s41586-024-08453-2.


BuDDI: Bulk Deconvolution with Domain Invariance to predict cell-type-specific perturbations from bulk.

Davidson N, Zhang F, Greene C PLoS Comput Biol. 2025; 21(1):e1012742.

PMID: 39823522 PMC: 11790236. DOI: 10.1371/journal.pcbi.1012742.


References
1.
Frangieh C, Melms J, Thakore P, Geiger-Schuller K, Ho P, Luoma A . Multimodal pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion. Nat Genet. 2021; 53(3):332-341. PMC: 8376399. DOI: 10.1038/s41588-021-00779-1. View

2.
Liberali P, Snijder B, Pelkmans L . A hierarchical map of regulatory genetic interactions in membrane trafficking. Cell. 2014; 157(6):1473-1487. DOI: 10.1016/j.cell.2014.04.029. View

3.
Battich N, Stoeger T, Pelkmans L . Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nat Methods. 2013; 10(11):1127-33. DOI: 10.1038/nmeth.2657. View

4.
Battich N, Stoeger T, Pelkmans L . Control of Transcript Variability in Single Mammalian Cells. Cell. 2015; 163(7):1596-610. DOI: 10.1016/j.cell.2015.11.018. View

5.
Gut G, Herrmann M, Pelkmans L . Multiplexed protein maps link subcellular organization to cellular states. Science. 2018; 361(6401). DOI: 10.1126/science.aar7042. View