» Articles » PMID: 26949479

Searching for Drug Synergy in Complex Dose-Response Landscapes Using an Interaction Potency Model

Overview
Specialty Biotechnology
Date 2016 Mar 8
PMID 26949479
Citations 354
Authors
Affiliations
Soon will be listed here.
Abstract

Rational design of multi-targeted drug combinations is a promising strategy to tackle the drug resistance problem for many complex disorders. A drug combination is usually classified as synergistic or antagonistic, depending on the deviation of the observed combination response from the expected effect calculated based on a reference model of non-interaction. The existing reference models were proposed originally for low-throughput drug combination experiments, which make the model assumptions often incompatible with the complex drug interaction patterns across various dose pairs that are typically observed in large-scale dose-response matrix experiments. To address these limitations, we proposed a novel reference model, named zero interaction potency (ZIP), which captures the drug interaction relationships by comparing the change in the potency of the dose-response curves between individual drugs and their combinations. We utilized a delta score to quantify the deviation from the expectation of zero interaction, and proved that a delta score value of zero implies both probabilistic independence and dose additivity. Using data from a large-scale anticancer drug combination experiment, we demonstrated empirically how the ZIP scoring approach captures the experimentally confirmed drug synergy while keeping the false positive rate at a low level. Further, rather than relying on a single parameter to assess drug interaction, we proposed the use of an interaction landscape over the full dose-response matrix to identify and quantify synergistic and antagonistic dose regions. The interaction landscape offers an increased power to differentiate between various classes of drug combinations, and may therefore provide an improved means for understanding their mechanisms of action toward clinical translation.

Citing Articles

Superior preclinical efficacy of co-treatment with BRG1/BRM and FLT3 inhibitor against AML cells with FLT3 mutations.

Fiskus W, Mill C, Piel J, Collins M, Hentemann M, Cuglievan B Blood Cancer J. 2025; 15(1):40.

PMID: 40089460 DOI: 10.1038/s41408-025-01251-7.


Predicting Synergistic Drug Combinations Based on Fusion of Cell and Drug Molecular Structures.

Yan S, Yu G, Yang J, Chen L Interdiscip Sci. 2025; .

PMID: 40088336 DOI: 10.1007/s12539-025-00695-6.


Scaling up drug combination surface prediction.

Huusari R, Wang T, Szedmak S, Dias D, Aittokallio T, Rousu J Brief Bioinform. 2025; 26(2).

PMID: 40079263 PMC: 11904408. DOI: 10.1093/bib/bbaf099.


Hallmarks of artificial intelligence contributions to precision oncology.

Chang T, Park S, Schaffer A, Jiang P, Ruppin E Nat Cancer. 2025; .

PMID: 40055572 DOI: 10.1038/s43018-025-00917-2.


Prediction of cancer cell line-specific synergistic drug combinations based on multi-omics data.

Chen J, Han H, Li L, Chen Z, Liu X, Li T PeerJ. 2025; 13:e19078.

PMID: 40028209 PMC: 11869890. DOI: 10.7717/peerj.19078.


References
1.
Zhao W, Sachsenmeier K, Zhang L, Sult E, Hollingsworth R, Yang H . A New Bliss Independence Model to Analyze Drug Combination Data. J Biomol Screen. 2014; 19(5):817-21. DOI: 10.1177/1087057114521867. View

2.
Lee J, Kong M, Ayers G, Lotan R . Interaction index and different methods for determining drug interaction in combination therapy. J Biopharm Stat. 2007; 17(3):461-80. DOI: 10.1080/10543400701199593. View

3.
LOEWE S . The problem of synergism and antagonism of combined drugs. Arzneimittelforschung. 1953; 3(6):285-90. View

4.
Lee S . Drug interaction: focusing on response surface models. Korean J Anesthesiol. 2010; 58(5):421-34. PMC: 2881515. DOI: 10.4097/kjae.2010.58.5.421. View

5.
Byrd J, Furman R, Coutre S, Flinn I, Burger J, Blum K . Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013; 369(1):32-42. PMC: 3772525. DOI: 10.1056/NEJMoa1215637. View