» Articles » PMID: 38728357

IGWAS: Image-based Genome-wide Association of Self-supervised Deep Phenotyping of Retina Fundus Images

Overview
Journal PLoS Genet
Specialty Genetics
Date 2024 May 10
PMID 38728357
Authors
Affiliations
Soon will be listed here.
Abstract

Existing imaging genetics studies have been mostly limited in scope by using imaging-derived phenotypes defined by human experts. Here, leveraging new breakthroughs in self-supervised deep representation learning, we propose a new approach, image-based genome-wide association study (iGWAS), for identifying genetic factors associated with phenotypes discovered from medical images using contrastive learning. Using retinal fundus photos, our model extracts a 128-dimensional vector representing features of the retina as phenotypes. After training the model on 40,000 images from the EyePACS dataset, we generated phenotypes from 130,329 images of 65,629 British White participants in the UK Biobank. We conducted GWAS on these phenotypes and identified 14 loci with genome-wide significance (p<5×10-8 and intersection of hits from left and right eyes). We also did GWAS on the retina color, the average color of the center region of the retinal fundus photos. The GWAS of retina colors identified 34 loci, 7 are overlapping with GWAS of raw image phenotype. Our results establish the feasibility of this new framework of genomic study based on self-supervised phenotyping of medical images.

Citing Articles

TransferGWAS of T1-weighted brain MRI data from UK Biobank.

Rakowski A, Monti R, Lippert C PLoS Genet. 2024; 20(12):e1011332.

PMID: 39671448 PMC: 11687923. DOI: 10.1371/journal.pgen.1011332.


Autoencoder-based phenotyping of ophthalmic images highlights genetic loci influencing retinal morphology and provides informative biomarkers.

Sergouniotis P, Diakite A, Gaurav K, Birney E, Fitzgerald T Bioinformatics. 2024; 41(1).

PMID: 39657956 PMC: 11751639. DOI: 10.1093/bioinformatics/btae732.


Phenotypic and genetic characteristics of retinal vascular parameters and their association with diseases.

Ortin Vela S, Beyeler M, Trofimova O, Iuliani I, Quiros J, de Vries V Nat Commun. 2024; 15(1):9593.

PMID: 39505872 PMC: 11542103. DOI: 10.1038/s41467-024-52334-1.


Eye-brain connections revealed by multimodal retinal and brain imaging genetics.

Zhao B, Li Y, Fan Z, Wu Z, Shu J, Yang X Nat Commun. 2024; 15(1):6064.

PMID: 39025851 PMC: 11258354. DOI: 10.1038/s41467-024-50309-w.


Unsupervised representation learning on high-dimensional clinical data improves genomic discovery and prediction.

Yun T, Cosentino J, Behsaz B, McCaw Z, Hill D, Luben R Nat Genet. 2024; 56(8):1604-1613.

PMID: 38977853 PMC: 11319202. DOI: 10.1038/s41588-024-01831-6.


References
1.
Canela-Xandri O, Rawlik K, Tenesa A . An atlas of genetic associations in UK Biobank. Nat Genet. 2018; 50(11):1593-1599. PMC: 6707814. DOI: 10.1038/s41588-018-0248-z. View

2.
Chappell J, Darden J, Payne L, Fink K, Bautch V . Blood Vessel Patterning on Retinal Astrocytes Requires Endothelial Flt-1 (VEGFR-1). J Dev Biol. 2019; 7(3). PMC: 6787756. DOI: 10.3390/jdb7030018. View

3.
Varadarajan A, Poplin R, Blumer K, Angermueller C, Ledsam J, Chopra R . Deep Learning for Predicting Refractive Error From Retinal Fundus Images. Invest Ophthalmol Vis Sci. 2018; 59(7):2861-2868. DOI: 10.1167/iovs.18-23887. View

4.
Bulik-Sullivan B, Finucane H, Anttila V, Gusev A, Day F, Loh P . An atlas of genetic correlations across human diseases and traits. Nat Genet. 2015; 47(11):1236-41. PMC: 4797329. DOI: 10.1038/ng.3406. View

5.
Zekavat S, Raghu V, Trinder M, Ye Y, Koyama S, Honigberg M . Deep Learning of the Retina Enables Phenome- and Genome-Wide Analyses of the Microvasculature. Circulation. 2021; 145(2):134-150. PMC: 8746912. DOI: 10.1161/CIRCULATIONAHA.121.057709. View