» Articles » PMID: 30349118

An Atlas of Genetic Associations in UK Biobank

Overview
Journal Nat Genet
Specialty Genetics
Date 2018 Oct 24
PMID 30349118
Citations 330
Authors
Affiliations
Soon will be listed here.
Abstract

Genome-wide association studies (GWAS) have identified many loci contributing to variation in complex traits, yet the majority of loci that contribute to the heritability of complex traits remain elusive. Large study populations with sufficient statistical power are required to detect the small effect sizes of the yet unidentified genetic variants. However, the analysis of huge cohorts, like UK Biobank, is challenging. Here, we present an atlas of genetic associations for 118 non-binary and 660 binary traits of 452,264 UK Biobank participants of European ancestry. Results are compiled in a publicly accessible database that allows querying genome-wide association results for 9,113,133 genetic variants, as well as downloading GWAS summary statistics for over 30 million imputed genetic variants (>23 billion phenotype-genotype pairs). Our atlas of associations (GeneATLAS, http://geneatlas.roslin.ed.ac.uk ) will help researchers to query UK Biobank results in an easy and uniform way without the need to incur high computational costs.

Citing Articles

Causal inference of inflammatory proteins in infertility: a Mendelian randomization study.

Chen P, Ni S, Ou-Yang L Front Endocrinol (Lausanne). 2025; 16:1448530.

PMID: 40070583 PMC: 11893426. DOI: 10.3389/fendo.2025.1448530.


An enhanced framework for local genetic correlation analysis.

Li Y, Pawitan Y, Shen X Nat Genet. 2025; .

PMID: 40065165 DOI: 10.1038/s41588-025-02123-3.


Comprehensive Proteomic Profiling of Exfoliation Glaucoma Via Mass Spectrometry Reveals SVEP1 as a Potential Biomarker.

Li J, Ma Y, Xie L, Zhuo K, He Y, Ma X Invest Ophthalmol Vis Sci. 2025; 66(3):19.

PMID: 40052860 PMC: 11905629. DOI: 10.1167/iovs.66.3.19.


Lessons from national biobank projects utilizing whole-genome sequencing for population-scale genomics.

Lee H, Kim W, Kwon N, Kim C, Kim S, An J Genomics Inform. 2025; 23(1):8.

PMID: 40050991 PMC: 11887102. DOI: 10.1186/s44342-025-00040-9.


Polygenic Score Approach to Predicting Risk of Metabolic Syndrome.

Timasheva Y, Kochetova O, Balkhiyarova Z, Korytina G, Prokopenko I, Nouwen A Genes (Basel). 2025; 16(1).

PMID: 39858569 PMC: 11764775. DOI: 10.3390/genes16010022.


References
1.
Meuwissen T, Hayes B, Goddard M . Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001; 157(4):1819-29. PMC: 1461589. DOI: 10.1093/genetics/157.4.1819. View

2.
Visscher P . A note on the asymptotic distribution of likelihood ratio tests to test variance components. Twin Res Hum Genet. 2006; 9(4):490-5. DOI: 10.1375/183242706778024928. View

3.
Aulchenko Y, de Koning D, Haley C . Genomewide rapid association using mixed model and regression: a fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. Genetics. 2007; 177(1):577-85. PMC: 2013682. DOI: 10.1534/genetics.107.075614. View

4.
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M, Bender D . PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007; 81(3):559-75. PMC: 1950838. DOI: 10.1086/519795. View

5.
Daetwyler H, Villanueva B, Woolliams J . Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS One. 2008; 3(10):e3395. PMC: 2561058. DOI: 10.1371/journal.pone.0003395. View