» Articles » PMID: 38670957

The Airborne Transmission of Viruses Causes Tight Transmission Bottlenecks

Overview
Journal Nat Commun
Specialty Biology
Date 2024 Apr 26
PMID 38670957
Authors
Affiliations
Soon will be listed here.
Abstract

The transmission bottleneck describes the number of viral particles that initiate an infection in a new host. Previous studies have used genome sequence data to suggest that transmission bottlenecks for influenza and SARS-CoV-2 involve few viral particles, but the general principles of virus transmission are not fully understood. Here we show that, across a broad range of circumstances, tight transmission bottlenecks are a simple consequence of the physical process of airborne viral transmission. We use mathematical modelling to describe the physical process of the emission and inhalation of infectious particles, deriving the result that that the great majority of transmission bottlenecks involve few viral particles. While exceptions to this rule exist, the circumstances needed to create these exceptions are likely very rare. We thus provide a physical explanation for previous inferences of bottleneck size, while predicting that tight transmission bottlenecks prevail more generally in respiratory virus transmission.

Citing Articles

Barcoded SARS-CoV-2 viruses define the impact of duration and route of exposure on the transmission bottleneck in a hamster model.

Trende R, Darling T, Gan T, Wang D, Boon A Sci Adv. 2025; 11(3):eads2927.

PMID: 39813353 PMC: 11778309. DOI: 10.1126/sciadv.ads2927.


The consequences of SARS-CoV-2 within-host persistence.

Sigal A, Neher R, Lessells R Nat Rev Microbiol. 2024; .

PMID: 39587352 DOI: 10.1038/s41579-024-01125-y.


Barcoded SARS-CoV-2 viruses define the impact of time and route of transmission on the transmission bottleneck in a Syrian hamster model.

Trende R, Darling T, Gan T, Wang D, Boon A bioRxiv. 2024; .

PMID: 38915710 PMC: 11195048. DOI: 10.1101/2024.06.08.597602.


The airborne transmission of viruses causes tight transmission bottlenecks.

Sinclair P, Zhao L, Beggs C, Illingworth C Nat Commun. 2024; 15(1):3540.

PMID: 38670957 PMC: 11053022. DOI: 10.1038/s41467-024-47923-z.

References
1.
Duval D, Palmer J, Tudge I, Pearce-Smith N, OConnell E, Bennett A . Long distance airborne transmission of SARS-CoV-2: rapid systematic review. BMJ. 2022; 377:e068743. PMC: 9240778. DOI: 10.1136/bmj-2021-068743. View

2.
Morawska L . Droplet fate in indoor environments, or can we prevent the spread of infection?. Indoor Air. 2006; 16(5):335-47. DOI: 10.1111/j.1600-0668.2006.00432.x. View

3.
Despres H, Mills M, Shirley D, Schmidt M, Huang M, Roychoudhury P . Measuring infectious SARS-CoV-2 in clinical samples reveals a higher viral titer:RNA ratio for Delta and Epsilon vs. Alpha variants. Proc Natl Acad Sci U S A. 2022; 119(5). PMC: 8812544. DOI: 10.1073/pnas.2116518119. View

4.
Elena S, Sanjuan R, Borderia A, Turner P . Transmission bottlenecks and the evolution of fitness in rapidly evolving RNA viruses. Infect Genet Evol. 2003; 1(1):41-8. DOI: 10.1016/s1567-1348(01)00006-5. View

5.
van Doremalen N, Bushmaker T, Morris D, Holbrook M, Gamble A, Williamson B . Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med. 2020; 382(16):1564-1567. PMC: 7121658. DOI: 10.1056/NEJMc2004973. View