» Articles » PMID: 25456074

Influenza A Virus Transmission Bottlenecks Are Defined by Infection Route and Recipient Host

Overview
Publisher Cell Press
Date 2014 Dec 3
PMID 25456074
Citations 139
Authors
Affiliations
Soon will be listed here.
Abstract

Despite its global relevance, our understanding of how influenza A virus transmission impacts the overall population dynamics of this RNA virus remains incomplete. To define this dynamic, we inserted neutral barcodes into the influenza A virus genome to generate a population of viruses that can be individually tracked during transmission events. We find that physiological bottlenecks differ dramatically based on the infection route and level of adaptation required for efficient replication. Strong genetic pressures are responsible for bottlenecks during adaptation across different host species, whereas transmission between susceptible hosts results in bottlenecks that are not genetically driven and occur at the level of the recipient. Additionally, the infection route significantly influences the bottleneck stringency, with aerosol transmission imposing greater selection than direct contact. These transmission constraints have implications in understanding the global migration of virus populations and provide a clearer perspective on the emergence of pandemic strains.

Citing Articles

Animal Models in Influenza Research.

Zhou J, Hemmink J, Whittaker C, Shelton H, Peacock T Methods Mol Biol. 2025; 2890:53-88.

PMID: 39890721 DOI: 10.1007/978-1-0716-4326-6_3.


Dispersal of influenza virus populations within the respiratory tract shapes their evolutionary potential.

Ferreri L, Seibert B, Caceres C, Patatanian K, Holmes K, Gay L Proc Natl Acad Sci U S A. 2025; 122(4):e2419985122.

PMID: 39835898 PMC: 11789087. DOI: 10.1073/pnas.2419985122.


Barcoded SARS-CoV-2 viruses define the impact of duration and route of exposure on the transmission bottleneck in a hamster model.

Trende R, Darling T, Gan T, Wang D, Boon A Sci Adv. 2025; 11(3):eads2927.

PMID: 39813353 PMC: 11778309. DOI: 10.1126/sciadv.ads2927.


Unraveling the genomic landscape of piscine myocarditis virus: mutation frequencies, viral diversity and evolutionary dynamics in Atlantic salmon.

Amono R, Markussen T, Singh V, Lund M, Manji F, Mor S Virus Evol. 2024; 10(1):veae097.

PMID: 39717704 PMC: 11665822. DOI: 10.1093/ve/veae097.


Quantifying the impact of vaccination on transmission and diversity of influenza A variants in pigs.

Li C, Culhane M, Schroeder D, Cheeran M, Galina Pantoja L, Jansen M J Virol. 2024; 98(12):e0124524.

PMID: 39530665 PMC: 11651001. DOI: 10.1128/jvi.01245-24.


References
1.
Maines T, Jayaraman A, Belser J, Wadford D, Pappas C, Zeng H . Transmission and pathogenesis of swine-origin 2009 A(H1N1) influenza viruses in ferrets and mice. Science. 2009; 325(5939):484-7. PMC: 2953552. DOI: 10.1126/science.1177238. View

2.
Smith G, Vijaykrishna D, Bahl J, Lycett S, Worobey M, Pybus O . Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature. 2009; 459(7250):1122-5. DOI: 10.1038/nature08182. View

3.
White L, Wallinga J, Finelli L, Reed C, Riley S, Lipsitch M . Estimation of the reproductive number and the serial interval in early phase of the 2009 influenza A/H1N1 pandemic in the USA. Influenza Other Respir Viruses. 2009; 3(6):267-76. PMC: 2782458. DOI: 10.1111/j.1750-2659.2009.00106.x. View

4.
van Riel D, den Bakker M, Leijten L, Chutinimitkul S, Munster V, de Wit E . Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses. Am J Pathol. 2010; 176(4):1614-8. PMC: 2843453. DOI: 10.2353/ajpath.2010.090949. View

5.
Wang G, Sherrill-Mix S, Chang K, Quince C, Bushman F . Hepatitis C virus transmission bottlenecks analyzed by deep sequencing. J Virol. 2010; 84(12):6218-28. PMC: 2876626. DOI: 10.1128/JVI.02271-09. View