6.
Helmin K, Morales-Nebreda L, Acosta M, Anekalla K, Chen S, Abdala-Valencia H
. Maintenance DNA methylation is essential for regulatory T cell development and stability of suppressive function. J Clin Invest. 2020; 130(12):6571-6587.
PMC: 7710299.
DOI: 10.1172/JCI137712.
View
7.
Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck 3rd W
. Comprehensive Integration of Single-Cell Data. Cell. 2019; 177(7):1888-1902.e21.
PMC: 6687398.
DOI: 10.1016/j.cell.2019.05.031.
View
8.
Yang S, Fujikado N, Kolodin D, Benoist C, Mathis D
. Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science. 2015; 348(6234):589-94.
PMC: 4710357.
DOI: 10.1126/science.aaa7017.
View
9.
Diambra L, Alonso A, Sookoian S, Pirola C
. Single cell gene expression profiling of nasal ciliated cells reveals distinctive biological processes related to epigenetic mechanisms in patients with severe COVID-19. Comput Biol Med. 2022; 148:105895.
PMC: 9338837.
DOI: 10.1016/j.compbiomed.2022.105895.
View
10.
Nagamine K, Peterson P, Scott H, Kudoh J, Minoshima S, Heino M
. Positional cloning of the APECED gene. Nat Genet. 1997; 17(4):393-8.
DOI: 10.1038/ng1297-393.
View
11.
Zhang Z, Zhou X
. Foxp3 Instability Helps tTregs Distinguish Self and Non-self. Front Immunol. 2019; 10:2226.
PMC: 6769115.
DOI: 10.3389/fimmu.2019.02226.
View
12.
Hori S, Nomura T, Sakaguchi S
. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003; 299(5609):1057-61.
DOI: 10.1126/science.1079490.
View
13.
Bennett C, Christie J, Ramsdell F, Brunkow M, Ferguson P, Whitesell L
. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001; 27(1):20-1.
DOI: 10.1038/83713.
View
14.
Schubert D, Bode C, Kenefeck R, Hou T, Wing J, Kennedy A
. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med. 2014; 20(12):1410-1416.
PMC: 4668597.
DOI: 10.1038/nm.3746.
View
15.
Sakaguchi S, Mikami N, Wing J, Tanaka A, Ichiyama K, Ohkura N
. Regulatory T Cells and Human Disease. Annu Rev Immunol. 2020; 38:541-566.
DOI: 10.1146/annurev-immunol-042718-041717.
View
16.
Huang L, Zheng Y, Yuan X, Ma Y, Xie G, Wang W
. Decreased frequencies and impaired functions of the CD31 subpopulation in T cells associated with decreased FoxP3 expression and enhanced T cell defects in patients with coronary heart disease. Clin Exp Immunol. 2016; 187(3):441-454.
PMC: 5290247.
DOI: 10.1111/cei.12897.
View
17.
Guo R, Lu M, Cao F, Wu G, Gao F, Pang H
. Single-cell map of diverse immune phenotypes in the acute myeloid leukemia microenvironment. Biomark Res. 2021; 9(1):15.
PMC: 7919996.
DOI: 10.1186/s40364-021-00265-0.
View
18.
de la Rosa M, Rutz S, Dorninger H, Scheffold A
. Interleukin-2 is essential for CD4+CD25+ regulatory T cell function. Eur J Immunol. 2004; 34(9):2480-8.
DOI: 10.1002/eji.200425274.
View
19.
Lei Y, Mat Ripen A, Ishimaru N, Ohigashi I, Nagasawa T, Jeker L
. Aire-dependent production of XCL1 mediates medullary accumulation of thymic dendritic cells and contributes to regulatory T cell development. J Exp Med. 2011; 208(2):383-94.
PMC: 3039864.
DOI: 10.1084/jem.20102327.
View
20.
Polansky J, Kretschmer K, Freyer J, Floess S, Garbe A, Baron U
. DNA methylation controls Foxp3 gene expression. Eur J Immunol. 2008; 38(6):1654-63.
DOI: 10.1002/eji.200838105.
View