» Articles » PMID: 38504517

APOE2 Gene Therapy Reduces Amyloid Deposition and Improves Markers of Neuroinflammation and Neurodegeneration in a Mouse Model of Alzheimer Disease

Abstract

Epidemiological studies show that individuals who carry the relatively uncommon APOE ε2 allele rarely develop Alzheimer disease, and if they do, they have a later age of onset, milder clinical course, and less severe neuropathological findings than people without this allele. The contrast is especially stark when compared with the major genetic risk factor for Alzheimer disease, APOE ε4, which has an age of onset several decades earlier, a more aggressive clinical course and more severe neuropathological findings, especially in terms of the amount of amyloid deposition. Here, we demonstrate that brain exposure to APOE ε2 via a gene therapy approach, which bathes the entire cortical mantle in the gene product after transduction of the ependyma, reduces Aβ plaque deposition, neurodegenerative synaptic loss, and, remarkably, reduces microglial activation in an APP/PS1 mouse model despite continued expression of human APOE ε4. This result suggests a promising protective effect of exogenous APOE ε2 and reveals a cell nonautonomous effect of the protein on microglial activation, which we show is similar to plaque-associated microglia in the brain of Alzheimer disease patients who inherit APOE ε2. These data increase the potential that an APOE ε2 therapeutic could be effective in Alzheimer disease, even in individuals born with the risky ε4 allele.

Citing Articles

Lipid-protecting disulfide bridges are the missing molecular link between ApoE4 and sporadic Alzheimer's disease in humans.

Ramsden C, Cutler R, Li X, Keyes G bioRxiv. 2025; .

PMID: 39868210 PMC: 11761642. DOI: 10.1101/2025.01.17.633633.


The role of gene polymorphisms in lung adenocarcinoma susceptibility and lipid profile.

Bi H, Ren D, Wang Y, Wang H, Zhang C Front Immunol. 2025; 15:1522761.

PMID: 39763652 PMC: 11701022. DOI: 10.3389/fimmu.2024.1522761.


Oligodendrocytes, the Forgotten Target of Gene Therapy.

Ozgur-Gunes Y, Le Stunff C, Bougneres P Cells. 2024; 13(23).

PMID: 39682723 PMC: 11640421. DOI: 10.3390/cells13231973.


ApoE: The Non-Protagonist Actor in Neurological Diseases.

Grimaldi L, Bovi E, Formisano R, Sancesario G Genes (Basel). 2024; 15(11).

PMID: 39596597 PMC: 11593850. DOI: 10.3390/genes15111397.


From Fundamentals to Innovation in Alzheimer's Disease: Molecular Findings and Revolutionary Therapies.

Sighencea M, Popescu R, Trifu S Int J Mol Sci. 2024; 25(22).

PMID: 39596378 PMC: 11594972. DOI: 10.3390/ijms252212311.


References
1.
Jimenez A, Dominguez-Pinos M, Guerra M, Fernandez-Llebrez P, Perez-Figares J . Structure and function of the ependymal barrier and diseases associated with ependyma disruption. Tissue Barriers. 2014; 2:e28426. PMC: 4091052. DOI: 10.4161/tisb.28426. View

2.
Hashimoto T, Fujii D, Naka Y, Kashiwagi-Hakozaki M, Matsuo Y, Matsuura Y . Collagenous Alzheimer amyloid plaque component impacts on the compaction of amyloid-β plaques. Acta Neuropathol Commun. 2020; 8(1):212. PMC: 7720522. DOI: 10.1186/s40478-020-01075-5. View

3.
Chernick D, Ortiz-Valle S, Jeong A, Qu W, Li L . Peripheral versus central nervous system APOE in Alzheimer's disease: Interplay across the blood-brain barrier. Neurosci Lett. 2019; 708:134306. PMC: 6693948. DOI: 10.1016/j.neulet.2019.134306. View

4.
Shi Y, Yamada K, Liddelow S, Smith S, Zhao L, Luo W . ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature. 2017; 549(7673):523-527. PMC: 5641217. DOI: 10.1038/nature24016. View

5.
Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R . The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. Immunity. 2017; 47(3):566-581.e9. PMC: 5719893. DOI: 10.1016/j.immuni.2017.08.008. View