» Articles » PMID: 38254182

PICALO: Principal Interaction Component Analysis for the Identification of Discrete Technical, Cell-type, and Environmental Factors That Mediate EQTLs

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2024 Jan 23
PMID 38254182
Authors
Affiliations
Soon will be listed here.
Abstract

Expression quantitative trait loci (eQTL) offer insights into the regulatory mechanisms of trait-associated variants, but their effects often rely on contexts that are unknown or unmeasured. We introduce PICALO, a method for hidden variable inference of eQTL contexts. PICALO identifies and disentangles technical from biological context in heterogeneous blood and brain bulk eQTL datasets. These contexts are biologically informative and reproducible, outperforming cell counts or expression-based principal components. Furthermore, we show that RNA quality and cell type proportions interact with thousands of eQTLs. Knowledge of hidden eQTL contexts may aid in the inference of functional mechanisms underlying disease variants.

Citing Articles

gsQTL: Associating genetic risk variants with gene sets by exploiting their shared variability.

Bouland G, Tesi N, Mahfouz A, Reinders M bioRxiv. 2024; .

PMID: 39345521 PMC: 11429704. DOI: 10.1101/2024.09.13.612853.


Genotype × environment interactions in gene regulation and complex traits.

Boye C, Nirmalan S, Ranjbaran A, Luca F Nat Genet. 2024; 56(6):1057-1068.

PMID: 38858456 PMC: 11492161. DOI: 10.1038/s41588-024-01776-w.


Methods and Insights from Single-Cell Expression Quantitative Trait Loci.

Kang J, Raveane A, Nathan A, Soranzo N, Raychaudhuri S Annu Rev Genomics Hum Genet. 2023; 24:277-303.

PMID: 37196361 PMC: 10784788. DOI: 10.1146/annurev-genom-101422-100437.

References
1.
Mostafavi S, Battle A, Zhu X, Urban A, Levinson D, Montgomery S . Normalizing RNA-sequencing data by modeling hidden covariates with prior knowledge. PLoS One. 2013; 8(7):e68141. PMC: 3715474. DOI: 10.1371/journal.pone.0068141. View

2.
Westra H, Jansen R, Fehrmann R, Meerman G, van Heel D, Wijmenga C . MixupMapper: correcting sample mix-ups in genome-wide datasets increases power to detect small genetic effects. Bioinformatics. 2011; 27(15):2104-11. DOI: 10.1093/bioinformatics/btr323. View

3.
Ecker S, Chen L, Pancaldi V, Bagger F, Fernandez J, Carrillo De Santa Pau E . Genome-wide analysis of differential transcriptional and epigenetic variability across human immune cell types. Genome Biol. 2017; 18(1):18. PMC: 5270224. DOI: 10.1186/s13059-017-1156-8. View

4.
Yoo T, Joo S, Kim H, Kim H, Sim H, Lee J . Disease-specific eQTL screening reveals an anti-fibrotic effect of AGXT2 in non-alcoholic fatty liver disease. J Hepatol. 2021; 75(3):514-523. DOI: 10.1016/j.jhep.2021.04.011. View

5.
Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, Young J . Single-cell transcriptomic analysis of Alzheimer's disease. Nature. 2019; 570(7761):332-337. PMC: 6865822. DOI: 10.1038/s41586-019-1195-2. View