» Articles » PMID: 38168991

Ultrafast Bisulfite Sequencing Detection of 5-methylcytosine in DNA and RNA

Overview
Journal Nat Biotechnol
Specialty Biotechnology
Date 2024 Jan 3
PMID 38168991
Authors
Affiliations
Soon will be listed here.
Abstract

Bisulfite sequencing (BS-seq) to detect 5-methylcytosine (5mC) is limited by lengthy reaction times, severe DNA damage, overestimation of 5mC level and incomplete C-to-U conversion of certain DNA sequences. We present ultrafast BS-seq (UBS-seq), which uses highly concentrated bisulfite reagents and high reaction temperatures to accelerate the bisulfite reaction by ~13-fold, resulting in reduced DNA damage and lower background noise. UBS-seq allows library construction from small amounts of purified genomic DNA, such as from cell-free DNA or directly from 1 to 100 mouse embryonic stem cells, with less overestimation of 5mC level and higher genome coverage than conventional BS-seq. Additionally, UBS-seq quantitatively maps RNA 5-methylcytosine (mC) from low inputs of mRNA and allows the detection of mC stoichiometry in highly structured RNA sequences. Our UBS-seq results identify NSUN2 as the major 'writer' protein responsible for the deposition of ~90% of mC sites in HeLa mRNA and reveal enriched mC sites in 5'-regions of mammalian mRNA, which may have functional roles in mRNA translation regulation.

Citing Articles

Plasma cfDNA VILL gene methylation as a diagnostic marker for nasopharyngeal carcinoma.

Fu X, Zhou Z, Yang T, Wen Y, Liu D, Zhou Y Clin Epigenetics. 2025; 17(1):38.

PMID: 40016817 PMC: 11869404. DOI: 10.1186/s13148-025-01847-7.


Detection, molecular function and mechanisms of m5C in cancer.

Zhang L, Li Y, Li L, Yao F, Cai M, Ye D Clin Transl Med. 2025; 15(3):e70239.

PMID: 40008496 PMC: 11862898. DOI: 10.1002/ctm2.70239.


Integration of CRISPR/dCas9-Based methylation editing with guide positioning sequencing identifies dynamic changes of mrDEGs in breast cancer progression.

Zhang B, Li J, Yu W Cell Mol Life Sci. 2025; 82(1):46.

PMID: 39833630 PMC: 11747065. DOI: 10.1007/s00018-024-05562-z.


RNA modifications in cancer.

Wu H, Chen S, Li X, Li Y, Shi H, Qing Y MedComm (2020). 2025; 6(1):e70042.

PMID: 39802639 PMC: 11718328. DOI: 10.1002/mco2.70042.


Profiling the epigenome using long-read sequencing.

Liu T, Conesa A Nat Genet. 2025; 57(1):27-41.

PMID: 39779955 DOI: 10.1038/s41588-024-02038-5.


References
1.
Dor Y, Cedar H . Principles of DNA methylation and their implications for biology and medicine. Lancet. 2018; 392(10149):777-786. DOI: 10.1016/S0140-6736(18)31268-6. View

2.
Loyfer N, Magenheim J, Peretz A, Cann G, Bredno J, Klochendler A . A DNA methylation atlas of normal human cell types. Nature. 2023; 613(7943):355-364. PMC: 9811898. DOI: 10.1038/s41586-022-05580-6. View

3.
Frommer M, McDonald L, Millar D, Collis C, Watt F, GRIGG G . A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A. 1992; 89(5):1827-31. PMC: 48546. DOI: 10.1073/pnas.89.5.1827. View

4.
Fraga M, Esteller M . DNA methylation: a profile of methods and applications. Biotechniques. 2002; 33(3):632, 634, 636-49. DOI: 10.2144/02333rv01. View

5.
Olova N, Krueger F, Andrews S, Oxley D, Berrens R, Branco M . Comparison of whole-genome bisulfite sequencing library preparation strategies identifies sources of biases affecting DNA methylation data. Genome Biol. 2018; 19(1):33. PMC: 5856372. DOI: 10.1186/s13059-018-1408-2. View