» Articles » PMID: 36599988

A DNA Methylation Atlas of Normal Human Cell Types

Abstract

DNA methylation is a fundamental epigenetic mark that governs gene expression and chromatin organization, thus providing a window into cellular identity and developmental processes. Current datasets typically include only a fraction of methylation sites and are often based either on cell lines that underwent massive changes in culture or on tissues containing unspecified mixtures of cells. Here we describe a human methylome atlas, based on deep whole-genome bisulfite sequencing, allowing fragment-level analysis across thousands of unique markers for 39 cell types sorted from 205 healthy tissue samples. Replicates of the same cell type are more than 99.5% identical, demonstrating the robustness of cell identity programmes to environmental perturbation. Unsupervised clustering of the atlas recapitulates key elements of tissue ontogeny and identifies methylation patterns retained since embryonic development. Loci uniquely unmethylated in an individual cell type often reside in transcriptional enhancers and contain DNA binding sites for tissue-specific transcriptional regulators. Uniquely hypermethylated loci are rare and are enriched for CpG islands, Polycomb targets and CTCF binding sites, suggesting a new role in shaping cell-type-specific chromatin looping. The atlas provides an essential resource for study of gene regulation and disease-associated genetic variants, and a wealth of potential tissue-specific biomarkers for use in liquid biopsies.

Citing Articles

Potentially causal associations between placental DNA methylation and schizophrenia and other neuropsychiatric disorders.

Cilleros-Portet A, Lesseur C, Mari S, Cosin-Tomas M, Lozano M, Irizar A Nat Commun. 2025; 16(1):2431.

PMID: 40087310 DOI: 10.1038/s41467-025-57760-3.


Atlas of imprinted and allele-specific DNA methylation in the human body.

Rosenski J, Peretz A, Magenheim J, Loyfer N, Shemer R, Glaser B Nat Commun. 2025; 16(1):2141.

PMID: 40069157 PMC: 11897249. DOI: 10.1038/s41467-025-57433-1.


Redox regulation: mechanisms, biology and therapeutic targets in diseases.

Li B, Ming H, Qin S, Nice E, Dong J, Du Z Signal Transduct Target Ther. 2025; 10(1):72.

PMID: 40050273 PMC: 11885647. DOI: 10.1038/s41392-024-02095-6.


Breaking rules: the complex relationship between DNA methylation and X-chromosome inactivation in the human placenta.

Inkster A, Matthews A, Phung T, Plaisier S, Wilson M, Brown C Biol Sex Differ. 2025; 16(1):18.

PMID: 40038810 PMC: 11877730. DOI: 10.1186/s13293-025-00696-6.


Genomic and fragmentomic landscapes of cell-free DNA for early cancer detection.

Bruhm D, Vulpescu N, Foda Z, Phallen J, Scharpf R, Velculescu V Nat Rev Cancer. 2025; .

PMID: 40038442 DOI: 10.1038/s41568-025-00795-x.