6.
Netto L, Machado L
. Preferential redox regulation of cysteine-based protein tyrosine phosphatases: structural and biochemical diversity. FEBS J. 2022; 289(18):5480-5504.
DOI: 10.1111/febs.16466.
View
7.
Caselli A, Marzocchini R, Camici G, Manao G, Moneti G, Pieraccini G
. The inactivation mechanism of low molecular weight phosphotyrosine-protein phosphatase by H2O2. J Biol Chem. 1998; 273(49):32554-60.
DOI: 10.1074/jbc.273.49.32554.
View
8.
Lee S, Yang K, Kwon J, Lee C, Jeong W, Rhee S
. Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem. 2002; 277(23):20336-42.
DOI: 10.1074/jbc.M111899200.
View
9.
Savitsky P, Finkel T
. Redox regulation of Cdc25C. J Biol Chem. 2002; 277(23):20535-40.
DOI: 10.1074/jbc.M201589200.
View
10.
Zhang R, Kumar G, Hansen U, Zoccheddu M, Sacchetti C, Holmes Z
. Oxidative stress promotes fibrosis in systemic sclerosis through stabilization of a kinase-phosphatase complex. JCI Insight. 2022; 7(8).
PMC: 9089796.
DOI: 10.1172/jci.insight.155761.
View
11.
Gabrielli A, Svegliati S, Moroncini G, Amico D
. New insights into the role of oxidative stress in scleroderma fibrosis. Open Rheumatol J. 2012; 6:87-95.
PMC: 3395898.
DOI: 10.2174/1874312901206010087.
View
12.
Karisch R, Fernandez M, Taylor P, Virtanen C, St-Germain J, Jin L
. Global proteomic assessment of the classical protein-tyrosine phosphatome and "Redoxome". Cell. 2011; 146(5):826-40.
PMC: 3176638.
DOI: 10.1016/j.cell.2011.07.020.
View
13.
Sacchetti C, Bai Y, Stanford S, Di Benedetto P, Cipriani P, Santelli E
. PTP4A1 promotes TGFβ signaling and fibrosis in systemic sclerosis. Nat Commun. 2017; 8(1):1060.
PMC: 5651906.
DOI: 10.1038/s41467-017-01168-1.
View
14.
Gulerez I, Funato Y, Wu H, Yang M, Kozlov G, Miki H
. Phosphocysteine in the PRL-CNNM pathway mediates magnesium homeostasis. EMBO Rep. 2016; 17(12):1890-1900.
PMC: 5283600.
DOI: 10.15252/embr.201643393.
View
15.
Kozlov G, Cheng J, Ziomek E, Banville D, Gehring K, Ekiel I
. Structural insights into molecular function of the metastasis-associated phosphatase PRL-3. J Biol Chem. 2004; 279(12):11882-9.
DOI: 10.1074/jbc.M312905200.
View
16.
Sun J, Wang W, Yang H, Liu S, Liang F, Fedorov A
. Structure and biochemical properties of PRL-1, a phosphatase implicated in cell growth, differentiation, and tumor invasion. Biochemistry. 2005; 44(36):12009-21.
DOI: 10.1021/bi0509191.
View
17.
Peti W, Page R
. Strategies to maximize heterologous protein expression in Escherichia coli with minimal cost. Protein Expr Purif. 2006; 51(1):1-10.
DOI: 10.1016/j.pep.2006.06.024.
View
18.
Kapust R, Tozser J, Fox J, Anderson D, Cherry S, Copeland T
. Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng. 2002; 14(12):993-1000.
DOI: 10.1093/protein/14.12.993.
View