» Articles » PMID: 38110959

Smoother: a Unified and Modular Framework for Incorporating Structural Dependency in Spatial Omics Data

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2023 Dec 19
PMID 38110959
Authors
Affiliations
Soon will be listed here.
Abstract

Spatial omics technologies can help identify spatially organized biological processes, but existing computational approaches often overlook structural dependencies in the data. Here, we introduce Smoother, a unified framework that integrates positional information into non-spatial models via modular priors and losses. In simulated and real datasets, Smoother enables accurate data imputation, cell-type deconvolution, and dimensionality reduction with remarkable efficiency. In colorectal cancer, Smoother-guided deconvolution reveals plasma cell and fibroblast subtype localizations linked to tumor microenvironment restructuring. Additionally, joint modeling of spatial and single-cell human prostate data with Smoother allows for spatial mapping of reference populations with significantly reduced ambiguity.

Citing Articles

Single-cell genomics and spatial transcriptomics in islet transplantation for diabetes treatment: advancing towards personalized therapies.

Mou L, Wang T, Chen Y, Luo Z, Wang X, Pu Z Front Immunol. 2025; 16:1554876.

PMID: 40051625 PMC: 11882877. DOI: 10.3389/fimmu.2025.1554876.


Differential gene expression analysis of spatial transcriptomic experiments using spatial mixed models.

Ospina O, Soupir A, Manjarres-Betancur R, Gonzalez-Calderon G, Yu X, Fridley B Sci Rep. 2024; 14(1):10967.

PMID: 38744956 PMC: 11094014. DOI: 10.1038/s41598-024-61758-0.


Starfysh integrates spatial transcriptomic and histologic data to reveal heterogeneous tumor-immune hubs.

He S, Jin Y, Nazaret A, Shi L, Chen X, Rampersaud S Nat Biotechnol. 2024; 43(2):223-235.

PMID: 38514799 PMC: 11415552. DOI: 10.1038/s41587-024-02173-8.


Smoother: a unified and modular framework for incorporating structural dependency in spatial omics data.

Su J, Reynier J, Fu X, Zhong G, Jiang J, Escalante R Genome Biol. 2023; 24(1):291.

PMID: 38110959 PMC: 10726548. DOI: 10.1186/s13059-023-03138-x.

References
1.
Gayoso A, Lopez R, Xing G, Boyeau P, Amiri V, Hong J . A Python library for probabilistic analysis of single-cell omics data. Nat Biotechnol. 2022; 40(2):163-166. DOI: 10.1038/s41587-021-01206-w. View

2.
Bergenstrahle L, He B, Bergenstrahle J, Abalo X, Mirzazadeh R, Thrane K . Super-resolved spatial transcriptomics by deep data fusion. Nat Biotechnol. 2021; 40(4):476-479. DOI: 10.1038/s41587-021-01075-3. View

3.
Diamond S, Boyd S . CVXPY: A Python-Embedded Modeling Language for Convex Optimization. J Mach Learn Res. 2016; 17. PMC: 4927437. View

4.
Ma Y, Zhou X . Spatially informed cell-type deconvolution for spatial transcriptomics. Nat Biotechnol. 2022; 40(9):1349-1359. PMC: 9464662. DOI: 10.1038/s41587-022-01273-7. View

5.
Zhao E, Stone M, Ren X, Guenthoer J, Smythe K, Pulliam T . Spatial transcriptomics at subspot resolution with BayesSpace. Nat Biotechnol. 2021; 39(11):1375-1384. PMC: 8763026. DOI: 10.1038/s41587-021-00935-2. View