» Articles » PMID: 33971932

SpatialDWLS: Accurate Deconvolution of Spatial Transcriptomic Data

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2021 May 11
PMID 33971932
Citations 123
Authors
Affiliations
Soon will be listed here.
Abstract

Recent development of spatial transcriptomic technologies has made it possible to characterize cellular heterogeneity with spatial information. However, the technology often does not have sufficient resolution to distinguish neighboring cell types. Here, we present spatialDWLS, to quantitatively estimate the cell-type composition at each spatial location. We benchmark the performance of spatialDWLS by comparing it with a number of existing deconvolution methods and find that spatialDWLS outperforms the other methods in terms of accuracy and speed. By applying spatialDWLS to a human developmental heart dataset, we observe striking spatial temporal changes of cell-type composition during development.

Citing Articles

Spotiphy enables single-cell spatial whole transcriptomics across an entire section.

Yang J, Zheng Z, Jiao Y, Yu K, Bhatara S, Yang X Nat Methods. 2025; .

PMID: 40074951 DOI: 10.1038/s41592-025-02622-5.


LETSmix: a spatially informed and learning-based domain adaptation method for cell-type deconvolution in spatial transcriptomics.

Zhan Y, Zhang Y, Hu Z, Wang Y, Zhu Z, Du S Genome Med. 2025; 17(1):16.

PMID: 40022231 PMC: 11869467. DOI: 10.1186/s13073-025-01442-8.


COME: contrastive mapping learning for spatial reconstruction of single-cell RNA sequencing data.

Wei X, Chen T, Wang X, Shen W, Liu C, Wu S Bioinformatics. 2025; 41(3).

PMID: 39992219 PMC: 11897431. DOI: 10.1093/bioinformatics/btaf083.


Precise gene expression deconvolution in spatial transcriptomics with STged.

Tu J, Yan H, Zhang X, Lin Z Nucleic Acids Res. 2025; 53(4).

PMID: 39970279 PMC: 11838043. DOI: 10.1093/nar/gkaf087.


Deconvolution and inference of spatial communication through optimization algorithm for spatial transcriptomics.

Wang Z, Liu Y, Chang X, Liu X Commun Biol. 2025; 8(1):235.

PMID: 39948133 PMC: 11825862. DOI: 10.1038/s42003-025-07625-8.


References
1.
Rodriques S, Stickels R, Goeva A, Martin C, Murray E, Vanderburg C . Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science. 2019; 363(6434):1463-1467. PMC: 6927209. DOI: 10.1126/science.aaw1219. View

2.
Zeisel A, Munoz-Manchado A, Codeluppi S, Lonnerberg P, La Manno G, Jureus A . Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015; 347(6226):1138-42. DOI: 10.1126/science.aaa1934. View

3.
Zeisel A, Hochgerner H, Lonnerberg P, Johnsson A, Memic F, van der Zwan J . Molecular Architecture of the Mouse Nervous System. Cell. 2018; 174(4):999-1014.e22. PMC: 6086934. DOI: 10.1016/j.cell.2018.06.021. View

4.
Newman M . Mixing patterns in networks. Phys Rev E Stat Nonlin Soft Matter Phys. 2003; 67(2 Pt 2):026126. DOI: 10.1103/PhysRevE.67.026126. View

5.
Newman A, Liu C, Green M, Gentles A, Feng W, Xu Y . Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015; 12(5):453-7. PMC: 4739640. DOI: 10.1038/nmeth.3337. View