» Articles » PMID: 37992709

Electron Counting with Direct Electron Detectors in MicroED

Overview
Journal Structure
Publisher Cell Press
Date 2023 Nov 22
PMID 37992709
Authors
Affiliations
Soon will be listed here.
Abstract

The combination of high sensitivity and rapid readout makes it possible for electron-counting detectors to record cryogenic electron microscopy data faster and more accurately without increasing the number of electrons used for data collection. This is especially useful for MicroED of macromolecular crystals where the strength of the diffracted signal at high resolution is comparable to the surrounding background. The ability to decrease fluence also alleviates concerns about radiation damage which limits the information that can be recovered from a diffraction measurement. The major concern with electron-counting direct detectors lies at the low end of the resolution spectrum: their limited linear range makes strong low-resolution reflections susceptible to coincidence loss and careful data collection is required to avoid compromising data quality. Nevertheless, these cameras are increasingly deployed in cryo-EM facilities, and several have been successfully used for MicroED. Provided coincidence loss can be minimized, electron-counting detectors bring high potential rewards.

Citing Articles

Ligand Screening and Discovery using Cocktail Soaking and Automated MicroED.

Lin J, Gallenito M, Hattne J, Gonen T bioRxiv. 2025; .

PMID: 40027750 PMC: 11870483. DOI: 10.1101/2025.02.18.638921.


Fast event-based electron counting for small-molecule structure determination by MicroED.

Vlahakis N, Qu S, Richards L, Moraes L, Cascio D, Nelson H Acta Crystallogr C Struct Chem. 2025; 81(Pt 3):116-130.

PMID: 39982366 PMC: 11881165. DOI: 10.1107/S2053229624012300.


Comprehensive microcrystal electron diffraction sample preparation for cryo-EM.

Nicolas W, Gillman C, Weaver S, Clabbers M, Shiriaeva A, Her A Nat Protoc. 2024; .

PMID: 39706914 DOI: 10.1038/s41596-024-01088-7.


Crystal Lattice-Induced Stress modulates Photoinduced Jahn-Teller Distortion Dynamics.

Tiwari V, Gallagher-Jones M, Hwang H, Duan H, Kirkland A, Miller R ACS Phys Chem Au. 2024; 4(6):660-668.

PMID: 39634641 PMC: 11613236. DOI: 10.1021/acsphyschemau.4c00047.


Eliminating the missing cone challenge through innovative approaches.

Gillman C, Bu G, Danelius E, Hattne J, Nannenga B, Gonen T J Struct Biol X. 2024; 9:100102.

PMID: 38962493 PMC: 11220036. DOI: 10.1016/j.yjsbx.2024.100102.


References
1.
Holton J, Frankel K . The minimum crystal size needed for a complete diffraction data set. Acta Crystallogr D Biol Crystallogr. 2010; 66(Pt 4):393-408. PMC: 2852304. DOI: 10.1107/S0907444910007262. View

2.
Danelius E, Porter N, Unge J, Arnold F, Gonen T . MicroED Structure of a Protoglobin Reactive Carbene Intermediate. J Am Chem Soc. 2023; 145(13):7159-7165. PMC: 10080679. DOI: 10.1021/jacs.2c12004. View

3.
Hattne J, Martynowycz M, Penczek P, Gonen T . MicroED with the Falcon III direct electron detector. IUCrJ. 2019; 6(Pt 5):921-926. PMC: 6760445. DOI: 10.1107/S2052252519010583. View

4.
Hattne J, Shi D, Glynn C, Zee C, Gallagher-Jones M, Martynowycz M . Analysis of Global and Site-Specific Radiation Damage in Cryo-EM. Structure. 2018; 26(5):759-766.e4. PMC: 6333475. DOI: 10.1016/j.str.2018.03.021. View

5.
Broennimann C, Eikenberry E, Henrich B, Horisberger R, Huelsen G, Pohl E . The PILATUS 1M detector. J Synchrotron Radiat. 2006; 13(Pt 2):120-30. DOI: 10.1107/S0909049505038665. View