» Articles » PMID: 37932529

Biosynthesis of Natural and Halogenated Plant Monoterpene Indole Alkaloids in Yeast

Abstract

Monoterpenoid indole alkaloids (MIAs) represent a large class of plant natural products with marketed pharmaceutical activities against a wide range of indications, including cancer, malaria and hypertension. Halogenated MIAs have shown improved pharmaceutical properties; however, synthesis of new-to-nature halogenated MIAs remains a challenge. Here we demonstrate a platform for de novo biosynthesis of two MIAs, serpentine and alstonine, in baker's yeast Saccharomyces cerevisiae and deploy it to systematically explore the biocatalytic potential of refactored MIA pathways for the production of halogenated MIAs. From this, we demonstrate conversion of individual haloindole derivatives to a total of 19 different new-to-nature haloserpentine and haloalstonine analogs. Furthermore, by process optimization and heterologous expression of a modified halogenase in the microbial MIA platform, we document de novo halogenation and biosynthesis of chloroalstonine. Together, this study highlights a microbial platform for enzymatic exploration and production of complex natural and new-to-nature MIAs with therapeutic potential.

Citing Articles

Systematic biotechnological production of isoprenoid analogs with bespoke carbon skeletons.

Wang L, Rosenfeldt M, Koutsaviti A, Harizani M, Zhao Y, Leelahakorn N Nat Commun. 2025; 16(1):2098.

PMID: 40025103 PMC: 11873216. DOI: 10.1038/s41467-025-57494-2.


Engineering Saccharomyces cerevisiae for medical applications.

Maneira C, Chamas A, Lackner G Microb Cell Fact. 2025; 24(1):12.

PMID: 39789534 PMC: 11720383. DOI: 10.1186/s12934-024-02625-5.


Rational engineering approaches for establishing insect olfaction reporters in yeast.

Hoch-Schneider E, Saleski T, Jensen E, Jensen M Biotechnol Notes. 2024; 4:90-99.

PMID: 39416924 PMC: 11446376. DOI: 10.1016/j.biotno.2023.11.002.


Verazine biosynthesis from simple sugars in engineered Saccharomyces cerevisiae.

Winegar P, Hudson G, Dell L, Astolfi M, Reed J, Payet R Metab Eng. 2024; 85:145-158.

PMID: 39074544 PMC: 11421371. DOI: 10.1016/j.ymben.2024.07.011.


Intein-mediated temperature control for complete biosynthesis of sanguinarine and its halogenated derivatives in yeast.

Gou Y, Li D, Zhao M, Li M, Zhang J, Zhou Y Nat Commun. 2024; 15(1):5238.

PMID: 38898098 PMC: 11186835. DOI: 10.1038/s41467-024-49554-w.


References
1.
Shaw W, Yamauchi H, Mead J, Gowers G, Bell D, Oling D . Engineering a Model Cell for Rational Tuning of GPCR Signaling. Cell. 2019; 177(3):782-796.e27. PMC: 6476273. DOI: 10.1016/j.cell.2019.02.023. View

2.
Liu T, Gou Y, Zhang B, Gao R, Dong C, Qi M . Construction of ajmalicine and sanguinarine de novo biosynthetic pathways using stable integration sites in yeast. Biotechnol Bioeng. 2022; 119(5):1314-1326. DOI: 10.1002/bit.28040. View

3.
Geiler-Samerotte K, Dion M, Budnik B, Wang S, Hartl D, Drummond D . Misfolded proteins impose a dosage-dependent fitness cost and trigger a cytosolic unfolded protein response in yeast. Proc Natl Acad Sci U S A. 2010; 108(2):680-5. PMC: 3021021. DOI: 10.1073/pnas.1017570108. View

4.
Biffinger J, Kim H, DiMagno S . The polar hydrophobicity of fluorinated compounds. Chembiochem. 2004; 5(5):622-7. DOI: 10.1002/cbic.200300910. View

5.
LaVallie E, DiBlasio E, Kovacic S, Grant K, Schendel P, McCoy J . A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology (N Y). 1993; 11(2):187-93. DOI: 10.1038/nbt0293-187. View