Episodic Live Imaging of Cone Photoreceptor Maturation in GNAT2-EGFP Retinal Organoids
Overview
Authors
Affiliations
Fluorescent reporter pluripotent stem cell-derived retinal organoids are powerful tools to investigate cell type-specific development and disease phenotypes. When combined with live imaging, they enable direct and repeated observation of cell behaviors within a developing retinal tissue. Here, we generated a human cone photoreceptor reporter line by CRISPR/Cas9 genome editing of WTC11-mTagRFPT-LMNB1 human induced pluripotent stem cells (iPSCs) by inserting enhanced green fluorescent protein (EGFP) coding sequences and a 2A self-cleaving peptide at the N-terminus of guanine nucleotide-binding protein subunit alpha transducin 2 (GNAT2). In retinal organoids generated from these iPSCs, the GNAT2-EGFP alleles robustly and exclusively labeled immature and mature cones. Episodic confocal live imaging of hydrogel immobilized retinal organoids allowed tracking of the morphological maturation of individual cones for >18 weeks and revealed inner segment accumulation of mitochondria and growth at 12.2 μm3 per day from day 126 to day 153. Immobilized GNAT2-EGFP cone reporter organoids provide a valuable tool for investigating human cone development and disease.
Non-canonical Wnt pathway expression in the developing mouse and human retina.
Campos R, Matsunaga K, Reid M, Fernandez G, Stepanian K, Bharathan S Exp Eye Res. 2024; 244:109947.
PMID: 38815793 PMC: 11179970. DOI: 10.1016/j.exer.2024.109947.
Classical and Innovative Evidence for Therapeutic Strategies in Retinal Dysfunctions.
Caruso L, Fields M, Rimondi E, Zauli G, Longo G, Marcuzzi A Int J Mol Sci. 2024; 25(4).
PMID: 38396799 PMC: 10889839. DOI: 10.3390/ijms25042124.