» Articles » PMID: 37845826

Challenges in Undertaking Nonlinear Mendelian Randomization

Overview
Authors
Affiliations
Soon will be listed here.
Abstract

Mendelian randomization (MR) is a widely used method that exploits the unique properties of germline genetic variation to strengthen causal inference in relationships between exposures and outcomes. Nonlinear MR allows estimation of the shape of these relationships. In a previous paper, the authors applied linear and nonlinear MR to estimate the effect of BMI on mortality in UK Biobank, providing evidence for a J-shaped association. However, it is now clear that there are problems with widely used nonlinear MR methods, which draws attention to the likely erroneous nature of the conclusions regarding the shapes of several explored relationships. Here, the authors explore the utility and likely biases of these nonlinear MR methods with the use of a negative control design. Although there remains good evidence for a causal effect of higher BMI increasing the risk of mortality, the pattern of this association across different levels of BMI requires further characterization.

Citing Articles

Identification of effect modifiers using a stratified Mendelian randomization algorithmic framework.

Man A, Knusel L, Graf J, Lali R, Le A, Di Scipio M Eur J Epidemiol. 2025; .

PMID: 40072671 DOI: 10.1007/s10654-025-01213-0.


Investigating whether smoking and alcohol behaviours influence risk of type 2 diabetes using a Mendelian randomisation study.

Reed Z, Sallis H, Richmond R, Attwood A, Lawlor D, Munafo M Sci Rep. 2025; 15(1):7985.

PMID: 40055374 PMC: 11889105. DOI: 10.1038/s41598-025-90437-x.


Detecting Non-linear Dependence through Genome Wide Analysis.

Akingbuwa W, Nivard M bioRxiv. 2025; .

PMID: 39990333 PMC: 11844478. DOI: 10.1101/2025.02.12.637804.


Exploring Causal Associations Between Serum Inflammatory Markers and Female Reproductive Disorders: A Mendelian Randomisation Study.

Alesi S, Teede H, Moran L, Enticott J, De Silva K, Mousa A Biomolecules. 2025; 14(12.

PMID: 39766252 PMC: 11674023. DOI: 10.3390/biom14121544.


Application of Mendelian randomized research method in oncology research: bibliometric analysis.

Chen J, Wang Y, Jiang R, Qu Y, Li Y, Zhang Y Front Oncol. 2025; 14:1424812.

PMID: 39741977 PMC: 11685051. DOI: 10.3389/fonc.2024.1424812.


References
1.
Wade K, Hamilton F, Carslake D, Sattar N, Davey Smith G, Timpson N . Challenges in undertaking nonlinear Mendelian randomization. Obesity (Silver Spring). 2023; 31(12):2887-2890. PMC: 7615556. DOI: 10.1002/oby.23927. View

2.
Davey Smith G . Mendelian randomisation and vitamin D: the importance of model assumptions. Lancet Diabetes Endocrinol. 2022; 11(1):14. DOI: 10.1016/S2213-8587(22)00345-X. View

3.
Richmond R, Davey Smith G . Mendelian Randomization: Concepts and Scope. Cold Spring Harb Perspect Med. 2021; 12(1). PMC: 8725623. DOI: 10.1101/cshperspect.a040501. View

4.
Carreras-Torres R, Johansson M, Haycock P, Relton C, Davey Smith G, Brennan P . Role of obesity in smoking behaviour: Mendelian randomisation study in UK Biobank. BMJ. 2018; 361:k1767. PMC: 5953237. DOI: 10.1136/bmj.k1767. View

5.
Sun Y, Burgess S, Staley J, Wood A, Bell S, Kaptoge S . Body mass index and all cause mortality in HUNT and UK Biobank studies: linear and non-linear mendelian randomisation analyses. BMJ. 2019; 364:l1042. PMC: 6434515. DOI: 10.1136/bmj.l1042. View