» Articles » PMID: 37781387

Quantitative Approaches for Decoding the Specificity of the Human T Cell Repertoire

Overview
Journal Front Immunol
Date 2023 Oct 2
PMID 37781387
Authors
Affiliations
Soon will be listed here.
Abstract

T cell receptor (TCR)-peptide-major histocompatibility complex (pMHC) interactions play a vital role in initiating immune responses against pathogens, and the specificity of TCRpMHC interactions is crucial for developing optimized therapeutic strategies. The advent of high-throughput immunological and structural evaluation of TCR and pMHC has provided an abundance of data for computational approaches that aim to predict favorable TCR-pMHC interactions. Current models are constructed using information on protein sequence, structures, or a combination of both, and utilize a variety of statistical learning-based approaches for identifying the rules governing specificity. This review examines the current theoretical, computational, and deep learning approaches for identifying TCR-pMHC recognition pairs, placing emphasis on each method's mathematical approach, predictive performance, and limitations.

Citing Articles

T-cell receptor structures and predictive models reveal comparable alpha and beta chain structural diversity despite differing genetic complexity.

Quast N, Abanades B, Guloglu B, Karuppiah V, Harper S, Raybould M Commun Biol. 2025; 8(1):362.

PMID: 40038394 PMC: 11880327. DOI: 10.1038/s42003-025-07708-6.


Feature selection enhances peptide binding predictions for TCR-specific interactions.

Teimouri H, Ghoreyshi Z, Kolomeisky A, George J Front Immunol. 2025; 15:1510435.

PMID: 39916960 PMC: 11799297. DOI: 10.3389/fimmu.2024.1510435.


Integration of kinetic data into affinity-based models for improved T cell specificity prediction.

Ghoreyshi Z, Teimouri H, Kolomeisky A, George J Biophys J. 2024; 123(23):4115-4122.

PMID: 39520055 PMC: 11628827. DOI: 10.1016/j.bpj.2024.11.002.


Feature Selection Enhances Peptide Binding Predictions for TCR-Specific Interactions.

Teimouri H, Ghoreyshi Z, Kolomeisky A, George J bioRxiv. 2024; .

PMID: 39416168 PMC: 11482946. DOI: 10.1101/2024.10.11.617901.


Limits on inferring T cell specificity from partial information.

Henderson J, Nagano Y, Milighetti M, Tiffeau-Mayer A Proc Natl Acad Sci U S A. 2024; 121(42):e2408696121.

PMID: 39374400 PMC: 11494314. DOI: 10.1073/pnas.2408696121.


References
1.
Dunbar J, Fuchs A, Shi J, Deane C . ABangle: characterising the VH-VL orientation in antibodies. Protein Eng Des Sel. 2013; 26(10):611-20. DOI: 10.1093/protein/gzt020. View

2.
Jokinen E, Dumitrescu A, Huuhtanen J, Gligorijevic V, Mustjoki S, Bonneau R . TCRconv: predicting recognition between T cell receptors and epitopes using contextualized motifs. Bioinformatics. 2022; 39(1). PMC: 9825763. DOI: 10.1093/bioinformatics/btac788. View

3.
Bell D, Domeniconi G, Yang C, Zhou R, Zhang L, Cong G . Dynamics-Based Peptide-MHC Binding Optimization by a Convolutional Variational Autoencoder: A Use-Case Model for CASTELO. J Chem Theory Comput. 2021; 17(12):7962-7971. DOI: 10.1021/acs.jctc.1c00870. View

4.
Saini S, Hersby D, Tamhane T, Povlsen H, Amaya Hernandez S, Nielsen M . SARS-CoV-2 genome-wide T cell epitope mapping reveals immunodominance and substantial CD8 T cell activation in COVID-19 patients. Sci Immunol. 2021; 6(58). PMC: 8139428. DOI: 10.1126/sciimmunol.abf7550. View

5.
Wang A, Lin X, Chau K, Onuchic J, Levine H, George J . RACER-m leverages structural features for sparse T cell specificity prediction. Sci Adv. 2024; 10(20):eadl0161. PMC: 11095454. DOI: 10.1126/sciadv.adl0161. View