» Articles » PMID: 37751736

Studying Stochastic Systems Biology of the Cell with Single-cell Genomics Data

Overview
Journal Cell Syst
Publisher Cell Press
Date 2023 Sep 26
PMID 37751736
Authors
Affiliations
Soon will be listed here.
Abstract

Recent experimental developments in genome-wide RNA quantification hold considerable promise for systems biology. However, rigorously probing the biology of living cells requires a unified mathematical framework that accounts for single-molecule biological stochasticity in the context of technical variation associated with genomics assays. We review models for a variety of RNA transcription processes, as well as the encapsulation and library construction steps of microfluidics-based single-cell RNA sequencing, and present a framework to integrate these phenomena by the manipulation of generating functions. Finally, we use simulated scenarios and biological data to illustrate the implications and applications of the approach.

Citing Articles

Fokker-Planck diffusion maps of microglial transcriptomes reveal radial differentiation into substates associated with Alzheimer's pathology.

Baumgartner A, Robinson M, Ertekin-Taner N, Golde T, Jaydev S, Huang S Commun Biol. 2025; 8(1):279.

PMID: 39987247 PMC: 11846988. DOI: 10.1038/s42003-025-07594-y.


Trajectory inference from single-cell genomics data with a process time model.

Fang M, Gorin G, Pachter L PLoS Comput Biol. 2025; 21(1):e1012752.

PMID: 39836699 PMC: 11760028. DOI: 10.1371/journal.pcbi.1012752.


Accurate quantification of nascent and mature RNAs from single-cell and single-nucleus RNA-seq.

Sullivan D, Hjorleifsson K, Swarna N, Oakes C, Holley G, Melsted P Nucleic Acids Res. 2024; 53(1.

PMID: 39657125 PMC: 11724275. DOI: 10.1093/nar/gkae1137.


Studying RNA dynamics from single-cell RNA sequencing snapshots.

Nat Methods. 2024; 21(8):1418-1419.

PMID: 39103448 DOI: 10.1038/s41592-024-02366-8.


The impact of package selection and versioning on single-cell RNA-seq analysis.

Rich J, Moses L, Einarsson P, Jackson K, Luebbert L, Booeshaghi A bioRxiv. 2024; .

PMID: 38617255 PMC: 11014608. DOI: 10.1101/2024.04.04.588111.


References
1.
Bergen V, Lange M, Peidli S, Wolf F, Theis F . Generalizing RNA velocity to transient cell states through dynamical modeling. Nat Biotechnol. 2020; 38(12):1408-1414. DOI: 10.1038/s41587-020-0591-3. View

2.
Thomas P, Shahrezaei V . Coordination of gene expression noise with cell size: analytical results for agent-based models of growing cell populations. J R Soc Interface. 2021; 18(178):20210274. PMC: 8150024. DOI: 10.1098/rsif.2021.0274. View

3.
Street K, Risso D, Fletcher R, Das D, Ngai J, Yosef N . Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics. 2018; 19(1):477. PMC: 6007078. DOI: 10.1186/s12864-018-4772-0. View

4.
Tang W, Bertaux F, Thomas P, Stefanelli C, Saint M, Marguerat S . bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data. Bioinformatics. 2019; 36(4):1174-1181. PMC: 7703772. DOI: 10.1093/bioinformatics/btz726. View

5.
Hippen A, Falco M, Weber L, Erkan E, Zhang K, Doherty J . miQC: An adaptive probabilistic framework for quality control of single-cell RNA-sequencing data. PLoS Comput Biol. 2021; 17(8):e1009290. PMC: 8415599. DOI: 10.1371/journal.pcbi.1009290. View