» Articles » PMID: 37739938

Epigenomic Analysis of Formalin-fixed Paraffin-embedded Samples by CUT&Tag

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Sep 22
PMID 37739938
Authors
Affiliations
Soon will be listed here.
Abstract

For more than a century, formalin-fixed paraffin-embedded (FFPE) sample preparation has been the preferred method for long-term preservation of biological material. However, the use of FFPE samples for epigenomic studies has been difficult because of chromatin damage from long exposure to high concentrations of formaldehyde. Previously, we introduced Cleavage Under Targeted Accessible Chromatin (CUTAC), an antibody-targeted chromatin accessibility mapping protocol based on CUT&Tag. Here we show that simple modifications of our CUTAC protocol either in single tubes or directly on slides produce high-resolution maps of paused RNA Polymerase II at enhancers and promoters using FFPE samples. We find that transcriptional regulatory element differences produced by FFPE-CUTAC distinguish between mouse brain tumors and identify and map regulatory element markers with high confidence and precision, including microRNAs not detectable by RNA-seq. Our simple workflows make possible affordable epigenomic profiling of archived biological samples for biomarker identification, clinical applications and retrospective studies.

Citing Articles

Application of Spatial Omics in the Cardiovascular System.

Hu Y, Jia H, Cui H, Song J Research (Wash D C). 2025; 8:0628.

PMID: 40062231 PMC: 11889335. DOI: 10.34133/research.0628.


Distinct structural and functional heterochromatin partitioning of lamin B1 and lamin B2 revealed using genome-wide nicking enzyme epitope targeted DNA sequencing.

Sen S, Esteve P, Raman K, Beaulieu J, Chin H, Feehery G Nucleic Acids Res. 2025; 53(2).

PMID: 39817518 PMC: 11736435. DOI: 10.1093/nar/gkae1317.


Emerging Approaches to Profile Accessible Chromatin from Formalin-Fixed Paraffin-Embedded Sections.

Sunitha Kumary V, Venters B, Raman K, Sen S, Esteve P, Cowles M Epigenomes. 2024; 8(2).

PMID: 38804369 PMC: 11130958. DOI: 10.3390/epigenomes8020020.


RNA Polymerase II hypertranscription at histone genes in cancer FFPE samples.

Henikoff S, Zheng Y, Paranal R, Xu Y, Greene J, Henikoff J bioRxiv. 2024; .

PMID: 38559075 PMC: 10979862. DOI: 10.1101/2024.02.28.582647.

References
1.
Zhang H, Polavarapu V, Xing P, Zhao M, Mathot L, Zhao L . Profiling chromatin accessibility in formalin-fixed paraffin-embedded samples. Genome Res. 2021; 32(1):150-161. PMC: 8744681. DOI: 10.1101/gr.275269.121. View

2.
Feng J, Liu T, Qin B, Zhang Y, Liu X . Identifying ChIP-seq enrichment using MACS. Nat Protoc. 2012; 7(9):1728-40. PMC: 3868217. DOI: 10.1038/nprot.2012.101. View

3.
Ozawa T, Arora S, Szulzewsky F, Juric-Sekhar G, Miyajima Y, Bolouri H . A De Novo Mouse Model of C11orf95-RELA Fusion-Driven Ependymoma Identifies Driver Functions in Addition to NF-κB. Cell Rep. 2018; 23(13):3787-3797. PMC: 6411037. DOI: 10.1016/j.celrep.2018.04.099. View

4.
Kaya-Okur H, Janssens D, Henikoff J, Ahmad K, Henikoff S . Efficient low-cost chromatin profiling with CUT&Tag. Nat Protoc. 2020; 15(10):3264-3283. PMC: 8318778. DOI: 10.1038/s41596-020-0373-x. View

5.
Szulzewsky F, Arora S, Hoellerbauer P, King C, Nathan E, Chan M . Comparison of tumor-associated YAP1 fusions identifies a recurrent set of functions critical for oncogenesis. Genes Dev. 2020; 34(15-16):1051-1064. PMC: 7397849. DOI: 10.1101/gad.338681.120. View