» Articles » PMID: 37347462

Autoantibodies Neutralizing Type I IFNs Underlie West Nile Virus Encephalitis in ∼40% of Patients

Abstract

Mosquito-borne West Nile virus (WNV) infection is benign in most individuals but can cause encephalitis in <1% of infected individuals. We show that ∼35% of patients hospitalized for WNV disease (WNVD) in six independent cohorts from the EU and USA carry auto-Abs neutralizing IFN-α and/or -ω. The prevalence of these antibodies is highest in patients with encephalitis (∼40%), and that in individuals with silent WNV infection is as low as that in the general population. The odds ratios for WNVD in individuals with these auto-Abs relative to those without them in the general population range from 19.0 (95% CI 15.0-24.0, P value <10-15) for auto-Abs neutralizing only 100 pg/ml IFN-α and/or IFN-ω to 127.4 (CI 87.1-186.4, P value <10-15) for auto-Abs neutralizing both IFN-α and IFN-ω at a concentration of 10 ng/ml. These antibodies block the protective effect of IFN-α in Vero cells infected with WNV in vitro. Auto-Abs neutralizing IFN-α and/or IFN-ω underlie ∼40% of cases of WNV encephalitis.

Citing Articles

Serum levels of neurofilament light chain and glial fibrillary acidic protein correlate with disease severity in patients with West Nile virus infection.

Dinoto A, Pacenti M, Mariotto S, Abate D, Lisi V, Satto S Emerg Microbes Infect. 2025; 14(1):2447606.

PMID: 39945666 PMC: 11849020. DOI: 10.1080/22221751.2024.2447606.


West Nile Virus: An Update Focusing on Southern Europe.

Carrasco L, Utrilla M, Fuentes-Romero B, Fernandez-Novo A, Martin-Maldonado B Microorganisms. 2025; 12(12.

PMID: 39770826 PMC: 11677777. DOI: 10.3390/microorganisms12122623.


The monogenic landscape of human infectious diseases.

Boisson-Dupuis S, Bastard P, Beziat V, Bustamante J, Cobat A, Jouanguy E J Allergy Clin Immunol. 2024; 155(3):768-783.

PMID: 39724971 PMC: 11875930. DOI: 10.1016/j.jaci.2024.12.1078.


A common form of dominant human IFNAR1 deficiency impairs IFN-α and -ω but not IFN-β-dependent immunity.

Al Qureshah F, Le Pen J, de Weerd N, Moncada-Velez M, Materna M, Lin D J Exp Med. 2024; 222(2).

PMID: 39680367 PMC: 11648951. DOI: 10.1084/jem.20241413.


A Novel Heterozygous NFKB2 Variant in a Multiplex Family with Common Variable Immune Deficiency and Autoantibodies Against Type I IFNs.

Baran A, Atilgan Lulecioglu A, Gao L, Yazici Y, Demirel F, Metin A J Clin Immunol. 2024; 45(1):48.

PMID: 39579251 PMC: 11821294. DOI: 10.1007/s10875-024-01843-1.


References
1.
Patel H, Sander B, Nelder M . Long-term sequelae of West Nile virus-related illness: a systematic review. Lancet Infect Dis. 2015; 15(8):951-9. DOI: 10.1016/S1473-3099(15)00134-6. View

2.
Melnick J, Paul J, RIORDAN J, BARNETT V, GOLDBLUM N, ZABIN E . Isolation from human sera in Egypt of a virus apparently identical to West Nile virus. Proc Soc Exp Biol Med. 1951; 77(4):661-5. DOI: 10.3181/00379727-77-18884. View

3.
Messacar K, Cree-Green M, Lovell M, Anderson M, Dominguez S . Severe Neuroinvasive West Nile Virus Infection in a Child with Undiagnosed Addison's Disease. IDCases. 2014; 1(3):29-31. PMC: 4131694. DOI: 10.1016/j.idcr.2014.04.001. View

4.
Zhang Q, Bastard P, Cobat A, Casanova J . Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature. 2022; 603(7902):587-598. PMC: 8957595. DOI: 10.1038/s41586-022-04447-0. View

5.
ODriscoll M, Ribeiro Dos Santos G, Wang L, Cummings D, Azman A, Paireau J . Age-specific mortality and immunity patterns of SARS-CoV-2. Nature. 2020; 590(7844):140-145. DOI: 10.1038/s41586-020-2918-0. View