» Articles » PMID: 37116498

A Global Genetic Interaction Network by Single-cell Imaging and Machine Learning

Abstract

Cellular and organismal phenotypes are controlled by complex gene regulatory networks. However, reference maps of gene function are still scarce across different organisms. Here, we generated synthetic genetic interaction and cell morphology profiles of more than 6,800 genes in cultured Drosophila cells. The resulting map of genetic interactions was used for machine learning-based gene function discovery, assigning functions to genes in 47 modules. Furthermore, we devised Cytoclass as a method to dissect genetic interactions for discrete cell states at the single-cell resolution. This approach identified an interaction of Cdk2 and the Cop9 signalosome complex, triggering senescence-associated secretory phenotypes and immunogenic conversion in hemocytic cells. Together, our data constitute a genome-scale resource of functional gene profiles to uncover the mechanisms underlying genetic interactions and their plasticity at the single-cell level.

Citing Articles

Capturing cell heterogeneity in representations of cell populations for image-based profiling using contrastive learning.

van Dijk R, Arevalo J, Babadi M, Carpenter A, Singh S PLoS Comput Biol. 2024; 20(11):e1012547.

PMID: 39527652 PMC: 11611260. DOI: 10.1371/journal.pcbi.1012547.


Capturing cell heterogeneity in representations of cell populations for image-based profiling using contrastive learning.

van Dijk R, Arevalo J, Babadi M, Carpenter A, Singh S bioRxiv. 2024; .

PMID: 39131344 PMC: 11312468. DOI: 10.1101/2023.11.14.567038.


Classification and functional characterization of regulators of intracellular STING trafficking identified by genome-wide optical pooled screening.

Gentili M, Carlson R, Liu B, Hellier Q, Andrews J, Qin Y bioRxiv. 2024; .

PMID: 38645119 PMC: 11030420. DOI: 10.1101/2024.04.07.588166.


Contribution of membrane-associated oscillators to biological timing at different timescales.

Stengl M, Schneider A Front Physiol. 2024; 14:1243455.

PMID: 38264332 PMC: 10803594. DOI: 10.3389/fphys.2023.1243455.

References
1.
Thurmond J, Goodman J, Strelets V, Attrill H, Gramates L, Marygold S . FlyBase 2.0: the next generation. Nucleic Acids Res. 2018; 47(D1):D759-D765. PMC: 6323960. DOI: 10.1093/nar/gky1003. View

2.
Macosko E, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M . Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. 2015; 161(5):1202-1214. PMC: 4481139. DOI: 10.1016/j.cell.2015.05.002. View

3.
Typas A, Nichols R, Siegele D, Shales M, Collins S, Lim B . High-throughput, quantitative analyses of genetic interactions in E. coli. Nat Methods. 2009; 5(9):781-7. PMC: 2700713. DOI: 10.1038/nmeth.1240. View

4.
Love M, Huber W, Anders S . Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12):550. PMC: 4302049. DOI: 10.1186/s13059-014-0550-8. View

5.
Guruharsha K, Rual J, Zhai B, Mintseris J, Vaidya P, Vaidya N . A protein complex network of Drosophila melanogaster. Cell. 2011; 147(3):690-703. PMC: 3319048. DOI: 10.1016/j.cell.2011.08.047. View