» Articles » PMID: 37085823

Consequences and Opportunities Arising Due to Sparser Single-cell RNA-seq Datasets

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2023 Apr 21
PMID 37085823
Authors
Affiliations
Soon will be listed here.
Abstract

With the number of cells measured in single-cell RNA sequencing (scRNA-seq) datasets increasing exponentially and concurrent increased sparsity due to more zero counts being measured for many genes, we demonstrate here that downstream analyses on binary-based gene expression give similar results as count-based analyses. Moreover, a binary representation scales up to ~ 50-fold more cells that can be analyzed using the same computational resources. We also highlight the possibilities provided by binarized scRNA-seq data. Development of specialized tools for bit-aware implementations of downstream analytical tasks will enable a more fine-grained resolution of biological heterogeneity.

Citing Articles

Mouse-to-human modeling of microglia single-nuclei transcriptomics identifies immune signaling pathways and potential therapeutic candidates associated with Alzheimer's disease.

Bergendorf A, Park J, Ball B, Brubaker D bioRxiv. 2025; .

PMID: 39975195 PMC: 11839086. DOI: 10.1101/2025.02.07.637100.


Human Single-Cell RNA-Sequencing Data Supports the Hypothesis of X Chromosome Insensitivity but Is Ineffective in Testing the Dosage Compensation Model.

Chen J, Chen X Mol Biol Evol. 2025; 42(2).

PMID: 39932018 PMC: 11811734. DOI: 10.1093/molbev/msaf004.


Gene function revealed at the moment of sitochastic gene silencing.

Gupta S, Cai J Commun Biol. 2025; 8(1):88.

PMID: 39828795 PMC: 11743767. DOI: 10.1038/s42003-025-07530-0.


High order expression dependencies finely resolve cryptic states and subtypes in single cell data.

Jansma A, Yao Y, Wolfe J, Del Debbio L, Beentjes S, Ponting C Mol Syst Biol. 2025; 21(2):173-207.

PMID: 39748128 PMC: 11790937. DOI: 10.1038/s44320-024-00074-1.


GPU-accelerated Kendall distance computation for large or sparse data.

Akhtyamov P, Nabi A, Gafurov V, Sizykh A, Favorov A, Medvedeva Y Gigascience. 2024; 13.

PMID: 39658191 PMC: 11631066. DOI: 10.1093/gigascience/giae088.


References
1.
Aran D, Looney A, Liu L, Wu E, Fong V, Hsu A . Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol. 2019; 20(2):163-172. PMC: 6340744. DOI: 10.1038/s41590-018-0276-y. View

2.
Sarkar A, Stephens M . Separating measurement and expression models clarifies confusion in single-cell RNA sequencing analysis. Nat Genet. 2021; 53(6):770-777. PMC: 8370014. DOI: 10.1038/s41588-021-00873-4. View

3.
Bakken T, Jorstad N, Hu Q, Lake B, Tian W, Kalmbach B . Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature. 2021; 598(7879):111-119. PMC: 8494640. DOI: 10.1038/s41586-021-03465-8. View

4.
Cao Y, Kitanovski S, Kuppers R, Hoffmann D . UMI or not UMI, that is the question for scRNA-seq zero-inflation. Nat Biotechnol. 2021; 39(2):158-159. DOI: 10.1038/s41587-020-00810-6. View

5.
Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K . Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 2019; 16(12):1289-1296. PMC: 6884693. DOI: 10.1038/s41592-019-0619-0. View