Consequences and Opportunities Arising Due to Sparser Single-cell RNA-seq Datasets
Overview
Affiliations
With the number of cells measured in single-cell RNA sequencing (scRNA-seq) datasets increasing exponentially and concurrent increased sparsity due to more zero counts being measured for many genes, we demonstrate here that downstream analyses on binary-based gene expression give similar results as count-based analyses. Moreover, a binary representation scales up to ~ 50-fold more cells that can be analyzed using the same computational resources. We also highlight the possibilities provided by binarized scRNA-seq data. Development of specialized tools for bit-aware implementations of downstream analytical tasks will enable a more fine-grained resolution of biological heterogeneity.
Bergendorf A, Park J, Ball B, Brubaker D bioRxiv. 2025; .
PMID: 39975195 PMC: 11839086. DOI: 10.1101/2025.02.07.637100.
Chen J, Chen X Mol Biol Evol. 2025; 42(2).
PMID: 39932018 PMC: 11811734. DOI: 10.1093/molbev/msaf004.
Gene function revealed at the moment of sitochastic gene silencing.
Gupta S, Cai J Commun Biol. 2025; 8(1):88.
PMID: 39828795 PMC: 11743767. DOI: 10.1038/s42003-025-07530-0.
High order expression dependencies finely resolve cryptic states and subtypes in single cell data.
Jansma A, Yao Y, Wolfe J, Del Debbio L, Beentjes S, Ponting C Mol Syst Biol. 2025; 21(2):173-207.
PMID: 39748128 PMC: 11790937. DOI: 10.1038/s44320-024-00074-1.
GPU-accelerated Kendall distance computation for large or sparse data.
Akhtyamov P, Nabi A, Gafurov V, Sizykh A, Favorov A, Medvedeva Y Gigascience. 2024; 13.
PMID: 39658191 PMC: 11631066. DOI: 10.1093/gigascience/giae088.