» Articles » PMID: 29610479

Single-cell RNA Sequencing Identifies Celltype-specific Cis-eQTLs and Co-expression QTLs

Overview
Journal Nat Genet
Specialty Genetics
Date 2018 Apr 4
PMID 29610479
Citations 179
Authors
Affiliations
Soon will be listed here.
Abstract

Genome-wide association studies have identified thousands of genetic variants that are associated with disease . Most of these variants have small effect sizes, but their downstream expression effects, so-called expression quantitative trait loci (eQTLs), are often large and celltype-specific. To identify these celltype-specific eQTLs using an unbiased approach, we used single-cell RNA sequencing to generate expression profiles of ~25,000 peripheral blood mononuclear cells from 45 donors. We identified previously reported cis-eQTLs, but also identified new celltype-specific cis-eQTLs. Finally, we generated personalized co-expression networks and identified genetic variants that significantly alter co-expression relationships (which we termed 'co-expression QTLs'). Single-cell eQTL analysis thus allows for the identification of genetic variants that impact regulatory networks.

Citing Articles

Single-cell eQTL mapping in yeast reveals a tradeoff between growth and reproduction.

Boocock J, Alexander N, Alamo Tapia L, Walter-McNeill L, Patel S, Munugala C Elife. 2025; 13.

PMID: 40073070 PMC: 11903034. DOI: 10.7554/eLife.95566.


Sex-stratified genome-wide meta-analysis identifies novel loci for cognitive decline in older adults.

Acharya V, Fan K, Snitz B, Ganguli M, DeKosky S, Lopez O Alzheimers Dement. 2025; 21(3):e14461.

PMID: 40042063 PMC: 11880917. DOI: 10.1002/alz.14461.


Leveraging prior knowledge to infer gene regulatory networks from single-cell RNA-sequencing data.

Stock M, Losert C, Zambon M, Popp N, Lubatti G, Hormanseder E Mol Syst Biol. 2025; 21(3):214-230.

PMID: 39939367 PMC: 11876610. DOI: 10.1038/s44320-025-00088-3.


Single-cell transcriptome-wide Mendelian randomization and colocalization reveals immune-mediated regulatory mechanisms and drug targets for COVID-19.

Ying H, Wu X, Jia X, Yang Q, Liu H, Zhao H EBioMedicine. 2025; 113:105596.

PMID: 39933264 PMC: 11867302. DOI: 10.1016/j.ebiom.2025.105596.


Missing Regulation Between Genetic Association and Transcriptional Abundance for Hypercholesterolemia Genes.

Hakim A, Connally N, Schnitzler G, Cho M, Jiang Z, Sunyaev S Genes (Basel). 2025; 16(1).

PMID: 39858631 PMC: 11764661. DOI: 10.3390/genes16010084.


References
1.
Westra H, Peters M, Esko T, Yaghootkar H, Schurmann C, Kettunen J . Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet. 2013; 45(10):1238-1243. PMC: 3991562. DOI: 10.1038/ng.2756. View

2.
Rosser Z, Balaresque P, Jobling M . Gene conversion between the X chromosome and the male-specific region of the Y chromosome at a translocation hotspot. Am J Hum Genet. 2009; 85(1):130-4. PMC: 2706966. DOI: 10.1016/j.ajhg.2009.06.009. View

3.
Das S, Forer L, Schonherr S, Sidore C, Locke A, Kwong A . Next-generation genotype imputation service and methods. Nat Genet. 2016; 48(10):1284-1287. PMC: 5157836. DOI: 10.1038/ng.3656. View

4.
Wills Q, Livak K, Tipping A, Enver T, Goldson A, Sexton D . Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments. Nat Biotechnol. 2013; 31(8):748-52. DOI: 10.1038/nbt.2642. View

5.
Zhernakova D, Deelen P, Vermaat M, van Iterson M, van Galen M, Arindrarto W . Identification of context-dependent expression quantitative trait loci in whole blood. Nat Genet. 2016; 49(1):139-145. DOI: 10.1038/ng.3737. View